Name
Date \qquad

Properties of Triangles
 Angle Relationships in a Triangle

The measure of $\angle A$ in $\triangle A B C$ is 36°. Use this information to answer Questions 1 through 3.

1. a. Give three examples of possible angle measures for $\angle B$ and $\angle C$ which make $\triangle A B C$ an acute triangle.
b. Draw $\triangle A B C$ with $m \angle A=36^{\circ}, m \angle B=80^{\circ}$, and $m \angle C=64^{\circ}$.
c. Name the angles of $\triangle A B C$ from smallest to largest.
d. Name the sides of $\triangle A B C$ from shortest to longest.
2. a. Give three examples of possible angle measures for $\angle B$ and $\angle C$ which make $\triangle A B C$ an obtuse triangle.
b. Draw $\triangle A B C$ with $m \angle A=36^{\circ}, m \angle B=120^{\circ}$, and $m \angle C=24^{\circ}$.
c. Name the angles of $\triangle A B C$ from smallest to largest.
d. Name the sides of $\triangle A B C$ from shortest to longest.
\qquad
\qquad
b. Draw $\triangle A B C$ with $m \angle C=90^{\circ}$.
c. Name the angles of $\triangle A B C$ from smallest to largest.
d. Name the sides of $\triangle A B C$ from shortest to longest.

Use the diagram to answer Questions 4 through 6.

4. a. Name the interior angles of the triangle.
b. Name the labeled exterior angles of the triangle.
5. a. With respect to $\angle 1$, which angles are remote interior angles?
b. With respect to $\angle 3$, which angles are remote interior angles?
c. With respect to $\angle 6$, which angles are remote interior angles?
6. Is the equation $m \angle 3=m \angle 2+m \angle 5$ true? Explain.

Determine the measures of $\angle 1$ and $\angle 2$.
7.

8.

\qquad
\qquad
10.

11.

12. Use the diagram to write an inequality that states the Exterior Angles Inequality Theorem.

13. Use the diagram and the Exterior Angles Inequality Theorem to answer parts (a) and (b).

a. Write an inequality for $m \angle 3$.
b. Write an inequality for $m \angle 2$.

Assignment

Name \qquad Date \qquad

Properties of Triangles Side Relationships in a Triangle

List the interior angles of each triangle in order from smallest to largest.
1.

2.

3.

4.

Determine whether the set of segment lengths given will form a triangle. If they will, classify the triangle as scalene, isosceles or equilateral. Explain your answer.
5. $3 \mathrm{~cm}, 4 \mathrm{~cm}, 5 \mathrm{~cm}$
6. $6 \mathrm{~cm}, 6 \mathrm{~cm}, 10 \mathrm{~cm}$
7. 65 in., 30 in., 12 in.
\qquad
\qquad

Answer the following questions about triangles.

9. A triangle has side lengths of 16 feet and 7 feet. What length(s) can be used for the third side to form an isosceles triangle? Explain.
10. How can you determine the smallest and largest interior angle of a triangle using only the side lengths?

Use the Triangle Inequality Theorem to write an inequality for x in Questions 12 through 17.
11.

12.

13.

14. A triangle with side lengths 2,6 , and x
15. A triangle with side lengths $x, 100$, and 86
16. A triangle with side lengths $x, 9$, and 12

Assignment

Name \qquad Date \qquad

Properties of Triangles Points of Concurrency

In Questions 1 through 3, perform each of the following constructions using a compass and a straight edge.

1. Construct the angle bisector of $\angle B A C$.

2. Construct the perpendicular bisector of $\overline{A B}$.

3. Construct a segment perpendicular to $\overline{A B}$ that passes through point C.

$$
c
$$

4. Construct the incenter of $\triangle D E F$.

5. Construct the circumcenter of $\triangle A B C$.

\qquad
\qquad
6. Construct the circumcenter of $\triangle D E F$.

7. Construct the circumcenter of $\Delta G H$.

8. Construct the centroid of $\triangle A B C$.

9. Construct the orthocenter of $\triangle J K L$.

In Questions 10 through 14, write the term that best completes the statement.

10. The incenter of a triangle is the point of concurrency of the \qquad of a triangle.
11. The circumcenter of a triangle is the point of concurrency of the \qquad of a triangle.
12. The centroid of a triangle is the point of concurrency of the \qquad of a triangle.
13. The orthocenter of a triangle is the point of concurrency of the \qquad of a triangle.
14. is an obtuse triangle. In an obtuse triangle, the orthocenter is always located on the
\qquad of the triangle.

Answer the following questions about triangles.

15. For an acute triangle, where is the circumcenter is located?
\qquad
16. For a right triangle, where is the circumcenter located?
17. For an obtuse triangle, where is the circumcenter located?
18. Suppose that the length of a median of a triangle is 6 inches. What is the distance along the median from the vertex to the centroid? What is the distance from the centroid to the midpoint opposite the vertex?

Assignment

Name \qquad Date \qquad

Properties of Triangles Direct and Indirect Proof

Complete each proof.

1. The Triangle Exterior Angle Theorem states:

The measure of the exterior angle of a triangle is equal to the sum of the measures of the two remote interior angles of the triangle.

Prove the Triangle Exterior Angle Theorem using a two-column proof by contradiction.

The reasons for the proof are provided. Write each step of the proof.

Given: Triangle $K L M$ with exterior $\angle P L M$
Prove: $m \angle K+m \angle M+m \angle P L M$

	Statements	Reasons
		1. Given
		2. Negation of conclusion
		3. Addition Property of Inequality
		4. Triangle Sum Theorem
		5. Linear Pair Postulate
		6. Definition of a Linear Pair
		7. Substitution using equations from steps 3, 4, and 5.

2. Complete the direct proof. The reasons for the proof are provided. Write each step of the proof.

Given: $m \angle 1=m \angle 4, m \angle 2=m \angle 3$
Prove: $m \angle 5=m \angle 6$

Statements	Reasons
	1. Given
	2. Given
	3. Triangle Sum Theorem
	4. Triangle Sum Theorem
	5. Substitution using equations from steps 3 and 4
	6. Substitution using equations from steps 1, 2, and 5
	7. Subtraction Property of Equality

\qquad
3. Complete the indirect proof. The steps for the proof are provided. Write a reason for each step.

Given: $m \angle 1=m \angle 4, m \angle 2=m \angle 3$
Prove: $m \angle 7=m \angle 1+m \angle 3$

Statements	Reasons
1. $m \angle 1=m \angle 4$	
2. $m \angle 2=m \angle 3$	
3. $m \angle 7 \neq m \angle 1+m \angle 3$	
4. $m \angle 7=m \angle 3+m \angle 4$	
5. $m \angle 7=m \angle 3+m \angle 1$	
6. $m \angle 7 \neq m \angle 7$	

4. Complete the direct proof. The steps for the proof are provided. Write a reason for each step.

Given: $m \angle 1=m \angle 3$
Prove: $m \angle D B A+m \angle A B C=180^{\circ}$

Statements	Reasons
1. $m \angle 1=m \angle 4$	
2. $m \angle 2+m \angle A B C+m \angle 3=180^{\circ}$	
3. $m \angle 2+m \angle A B C+m \angle 1=180^{\circ}$	
4. $(m \angle 1+m \angle 2)+m \angle A B C=180^{\circ}$	
5. $m \angle 1+m \angle 2=m \angle D A B$	
6. $m \angle D B A+m \angle A B C=180^{\circ}$	

Name \qquad Date \qquad

Computer Graphics Proving Triangles Congruent: SSS and SAS

Complete the statements below about triangle congruence.

1. If you know that the \qquad sides of two triangles are congruent, then the triangles are congruent by the \qquad .
2. If you know that two pairs of \qquad are congruent, and the
\qquad are congruent, then you know that triangles are congruent by the
\qquad -

In Questions 3 and 4, prove that the triangles are congruent.
3. $\overline{V T} \cong \overline{C B} ; \overline{V D} \cong \overline{C G} ; \overline{T D} \cong \overline{G B}$

4. $\overline{A B} \cong \overline{R E} ; m \angle B=m \angle E ; \overline{B C} \cong \overline{E W}$

Read the scenario below. Use the scenario to complete Question 5.

The figure below is a basic plan for a decorative porch roof. For construction purposes, $\triangle D P A \cong \triangle D P G$. You know from your construction that $\overline{D P} \perp \overline{A G}$ and $\overline{D P}$ bisects $\overline{A G}$.

5. Can you prove $\triangle D P A \cong \triangle D P G$? Complete the two-column proof.

Statements	Reasons
1. $\overline{D P} \perp \overline{A G}$	1.
2. $\angle D P A$ and $\angle D P G$ are right angles.	2.
3. $\angle D P A \cong \angle D P G$	3.
4. $\overline{A P} \cong \overline{G P}$	4.
5. $\overline{D P} \cong \overline{D P}$	5.
6. $\triangle D P A \cong \triangle D P G$	6.

Name \qquad Date \qquad

Wind Triangles
 Proving Triangles Congruent: ASA and AAS

Complete the statements below about triangle congruence.

1. If you know that \qquad of one triangle are congruent to \qquad
of another triangle and the included \qquad are congruent, the triangles are congruent by the \qquad Congruence Postulate.
2. If you know that two \qquad of one triangle are congruent to two \qquad
of another triangle and two \qquad non-included sides are congruent,
then the triangles are congruent by the \qquad Congruence Theorem.

Using Questions 1 and 2 and the triangles below, state the third congruence that must be given to prove the triangles are congruent using the method indicated.
3.

Given	$\angle A \cong \angle R$ $\angle C \cong \angle W$	$\angle B \cong \angle E$ $\angle C \cong \angle W$
Method	ASA	AAS
Need		

In Questions 4 through 6, write the given information, then state the postulate or theorem that is used to conclude that the triangles are congruent.
4.

5. A

Name \qquad Date \qquad

Planting Grape Vines

Proving Triangles Congruent: HL

Complete the statement below about triangle congruence and the Hypotenuse-Leg Congruence Theorem.

1. If you know that the \qquad and a leg of a \qquad triangle are congruent to the \qquad and leg of another \qquad triangle, then the triangles are congruent.

Use the figure below to answer Questions 2 and 3. Use the Hypotenuse-Leg Congruence Theorem to prove that the triangles are congruent in each situation. If there is not enough information, note what is needed.

2. $\overline{A B} \cong \overline{D C} ; \overline{A E} \cong \overline{D E}$
3. $\angle B \cong \angle C ; \overline{B E} \cong \overline{C E}$
4. If you fold a square piece of paper on the diagonal, you get a special pair of right triangles. What are they and how can you prove that they are congruent?

Read the scenario and use the figure below to answer Questions 5 and 6.
The pole is supported by 2 wires that are the same length.

5. How do you know the wires are fastened to the ground equal distances from the pole? Use complete sentences to explain your answer.

6. $\overline{A C}$ is the perpendicular bisector of $\overline{D B}$. Complete the two-column proof to show that $\angle D=\angle B$.

Statements	Reasons
1. $\overline{A C} \perp \overline{D B}$	1.
2. $\angle A C D$ and $\angle A C B$ are right angles.	2.
3. $\angle A C D \cong \angle A C B$	3.
4. $\overline{D C} \cong \overline{B C}$	4.
5. $\overline{A C} \cong \overline{A C}$	5.
6. $\triangle A C D \cong \triangle A C B$	6.
7. $\angle D \cong \angle B$	7.

