**Assignment for Lesson 5.1** 

Name \_\_\_

Date

### **Properties of Triangles Angle Relationships in a Triangle**

The measure of  $\angle A$  in  $\triangle ABC$  is 36°. Use this information to answer Questions 1 through 3.

**1. a.** Give three examples of possible angle measures for  $\angle B$  and  $\angle C$  which make  $\triangle ABC$  an acute triangle.

**b.** Draw  $\triangle ABC$  with  $m \angle A = 36^\circ$ ,  $m \angle B = 80^\circ$ , and  $m \angle C = 64^\circ$ .

**c.** Name the angles of  $\triangle ABC$  from smallest to largest.

**d.** Name the sides of  $\triangle ABC$  from shortest to longest.

**2. a.** Give three examples of possible angle measures for  $\angle B$  and  $\angle C$  which make  $\triangle ABC$  an obtuse triangle.

**b.** Draw  $\triangle ABC$  with  $m \angle A = 36^\circ$ ,  $m \angle B = 120^\circ$ , and  $m \angle C = 24^\circ$ .

**c.** Name the angles of  $\triangle ABC$  from smallest to largest.

**d.** Name the sides of  $\triangle ABC$  from shortest to longest.

 a. Can ∆ABC be a right triangle? If yes, how many unique triangles can be formed? Explain. **b.** Draw  $\triangle ABC$  with  $m \angle C = 90^{\circ}$ .

- **c.** Name the angles of  $\triangle ABC$  from smallest to largest.
- **d.** Name the sides of  $\triangle ABC$  from shortest to longest.







- 4. a. Name the interior angles of the triangle.
  - **b.** Name the labeled exterior angles of the triangle.
- 5. a. With respect to  $\angle 1$ , which angles are remote interior angles?
  - **b.** With respect to  $\angle 3$ , which angles are remote interior angles?
  - c. With respect to  $\angle 6$ , which angles are remote interior angles?



**6.** Is the equation  $m \angle 3 = m \angle 2 + m \angle 5$  true? Explain.







Solve for *x* in each triangle in Questions 9 through 11.





**12.** Use the diagram to write an inequality that states the Exterior Angles Inequality Theorem.



**13.** Use the diagram and the Exterior Angles Inequality Theorem to answer parts (a) and (b).



- **a.** Write an inequality for  $m \angle 3$ .
- **b.** Write an inequality for  $m \angle 2$ .

-

Assignment for Lesson 5.2

Name \_

© 2009 Carnegie Learning, Inc.

Date \_\_\_\_\_

## **Properties of Triangles Side Relationships in a Triangle**

List the interior angles of each triangle in order from smallest to largest.



Determine whether the set of segment lengths given will form a triangle. If they will, classify the triangle as scalene, isosceles or equilateral. Explain your answer.

**5.** 3 cm, 4 cm, 5 cm

6. 6 cm, 6 cm, 10 cm

7. 65 in., 30 in., 12 in.

**8.** 20 in., 20 in., 20 in.

### Answer the following questions about triangles.

**9.** A triangle has side lengths of 16 feet and 7 feet. What length(s) can be used for the third side to form an isosceles triangle? Explain.

**10.** How can you determine the smallest and largest interior angle of a triangle using only the side lengths?

Use the Triangle Inequality Theorem to write an inequality for *x* in Questions 12 through 17.







- **14.** A triangle with side lengths 2, 6, and *x*
- **15.** A triangle with side lengths *x*, 100, and 86
- **16.** A triangle with side lengths *x*, 9, and 12

**Assignment for Lesson 5.3** 

Name \_\_\_\_\_

Date \_\_\_\_

### Properties of Triangles Points of Concurrency

In Questions 1 through 3, perform each of the following constructions using a compass and a straight edge.

**1.** Construct the angle bisector of  $\angle BAC$ .



**2.** Construct the perpendicular bisector of  $\overline{AB}$ .



**3.** Construct a segment perpendicular to  $\overline{AB}$  that passes through point *C*.



**4.** Construct the incenter of  $\triangle DEF$ .



**5.** Construct the circumcenter of  $\triangle ABC$ .



**6.** Construct the circumcenter of  $\triangle DEF$ .



**7.** Construct the circumcenter of  $\triangle GHI$ .



**8.** Construct the centroid of  $\triangle ABC$ .





-

**9.** Construct the orthocenter of  $\triangle JKL$ .



# In Questions 10 through 14, write the term that best completes the statement.

- **10.** The incenter of a triangle is the point of concurrency of the \_\_\_\_\_\_ of a triangle.
- **11.** The circumcenter of a triangle is the point of concurrency of the \_\_\_\_\_\_ of a triangle.
- **12.** The centroid of a triangle is the point of concurrency of the \_\_\_\_\_\_ of a triangle.
- **13.** The orthocenter of a triangle is the point of concurrency of the \_\_\_\_\_\_ of a triangle.
- **14.** is an obtuse triangle. In an obtuse triangle, the orthocenter is always located on the \_\_\_\_\_\_ of the triangle.

#### Answer the following questions about triangles.

15. For an acute triangle, where is the circumcenter is located?

16. For a right triangle, where is the circumcenter located?

- 17. For an obtuse triangle, where is the circumcenter located?
- **18.** Suppose that the length of a median of a triangle is 6 inches. What is the distance along the median from the vertex to the centroid? What is the distance from the centroid to the midpoint opposite the vertex?

5

**Assignment for Lesson 5.4** 

Name \_

Date

### Properties of Triangles Direct and Indirect Proof

### Complete each proof.

1. The Triangle Exterior Angle Theorem states:

The measure of the exterior angle of a triangle is equal to the sum of the measures of the two remote interior angles of the triangle.

Prove the Triangle Exterior Angle Theorem using a two-column proof by contradiction.

The reasons for the proof are provided. Write each step of the proof.



Given: Triangle KLM with exterior ∠PLM

Prove:  $m \angle K + m \angle M + m \angle PLM$ 

| Statements | Reasons                                                 |
|------------|---------------------------------------------------------|
|            | 1. Given                                                |
|            | 2. Negation of conclusion                               |
|            | 3. Addition Property of Inequality                      |
|            |                                                         |
|            | 4. Triangle Sum Theorem                                 |
|            | 5. Linear Pair Postulate                                |
|            | 6. Definition of a Linear Pair                          |
|            | 7. Substitution using equations from steps 3, 4, and 5. |

**2.** Complete the direct proof. The reasons for the proof are provided. Write each step of the proof.



Given: 
$$m \angle 1 = m \angle 4$$
,  $m \angle 2 = m \angle 3$ 

Prove: 
$$m \angle 5 = m \angle 6$$

| Statements | Reasons                                                |
|------------|--------------------------------------------------------|
|            | 1. Given                                               |
|            | 2. Given                                               |
|            | 3. Triangle Sum Theorem                                |
|            | 4. Triangle Sum Theorem                                |
|            | 5. Substitution using equations from<br>steps 3 and 4  |
|            | 6. Substitution using equations from steps 1, 2, and 5 |
|            | 7. Subtraction Property of Equality                    |

**3.** Complete the indirect proof. The steps for the proof are provided. Write a reason for each step.



Given:  $m \angle 1 = m \angle 4$ ,  $m \angle 2 = m \angle 3$ 

Prove:  $m \angle 7 = m \angle 1 + m \angle 3$ 

| Statements                                   | Reasons |
|----------------------------------------------|---------|
| $1. m \angle 1 = m \angle 4$                 |         |
| $2. m \angle 2 = m \angle 3$                 |         |
| $3. m \angle 7 \neq m \angle 1 + m \angle 3$ |         |
| $4. m \angle 7 = m \angle 3 + m \angle 4$    |         |
| $5. m \angle 7 = m \angle 3 + m \angle 1$    |         |
|                                              |         |
| 6. $m \angle 7 \neq m \angle 7$              |         |
|                                              |         |

5

**4.** Complete the direct proof. The steps for the proof are provided. Write a reason for each step.



Given:  $m \angle 1 = m \angle 3$ 

Prove:  $m \angle DBA + m \angle ABC = 180^{\circ}$ 

| Statements                                                  | Reasons |
|-------------------------------------------------------------|---------|
| $1. m \angle 1 = m \angle 4$                                |         |
| $2. m \angle 2 + m \angle ABC + m \angle 3 = 180^{\circ}$   |         |
| $3. m \angle 2 + m \angle ABC + m \angle 1 = 180^{\circ}$   |         |
| 4. $(m \angle 1 + m \angle 2) + m \angle ABC = 180^{\circ}$ |         |
| $5. m \angle 1 + m \angle 2 = m \angle DAB$                 |         |
| $6. m \angle DBA + m \angle ABC = 180^{\circ}$              |         |
|                                                             |         |

## 

In Questions 3 and 4, prove that the triangles are congruent.



\_\_\_\_\_.

**4.**  $\overline{AB} \cong \overline{RE}; m \angle B = m \angle E; \overline{BC} \cong \overline{EW}$ 



### Read the scenario below. Use the scenario to complete Question 5.

The figure below is a basic plan for a decorative porch roof. For construction purposes,  $\Delta DPA \cong \Delta DPG$ . You know from your construction that  $\overline{DP} \perp \overline{AG}$  and  $\overline{DP}$  bisects  $\overline{AG}$ .



**5.** Can you prove  $\triangle DPA \cong \triangle DPG$ ? Complete the two-column proof.

| Statements                                                | Reasons |
|-----------------------------------------------------------|---------|
| <b>1.</b> $\overline{DP} \perp \overline{AG}$             | 1.      |
| <b>2.</b> $\angle DPA$ and $\angle DPG$ are right angles. | 2.      |
| <b>3.</b> ∠DPA ≅ ∠DPG                                     | 3.      |
| $4.\overline{AP}\cong\overline{GP}$                       | 4.      |
| <b>5.</b> $\overline{DP} \cong \overline{DP}$             | 5.      |
| <b>6.</b> $\Delta DPA \cong \Delta DPG$                   | 6.      |

**Assignment for Lesson 5.6** 

| Name |                                          | Date                                 |
|------|------------------------------------------|--------------------------------------|
|      | nd Triangles<br>oving Triangles Congruen | t: ASA and AAS                       |
| Con  | nplete the statements below abo          | out triangle congruence.             |
| 1.   | If you know that                         | of one triangle are congruent to     |
|      | of another triangle and the included     | are congruent, the triangles are     |
|      | congruent by the                         | Congruence Postulate.                |
| 2.   | If you know that two                     | of one triangle are congruent to two |
|      | of another triangle and two              | non-included sides are congruent,    |
|      | then the triangles are congruent by      | the Congruence Theorem.              |

Using Questions 1 and 2 and the triangles below, state the third congruence that must be given to prove the triangles are congruent using the method indicated.



5

In Questions 4 through 6, write the given information, then state the postulate or theorem that is used to conclude that the triangles are congruent.





| Assignment                                                               |                | Assignment for Lesson 5.7   |
|--------------------------------------------------------------------------|----------------|-----------------------------|
| Name                                                                     | Date           |                             |
| Planting Grape Vines<br>Proving Triangles Congruent:                     | HL             |                             |
| Complete the statement below about the Hypotenuse-Leg Congruence Theorem | • •            | d the                       |
| 1. If you know that the                                                  | and a leg of a | _ triangle are congruent to |

the and leg of another triangle, then the triangles are congruent.

Use the figure below to answer Questions 2 and 3. Use the Hypotenuse-Leg Congruence Theorem to prove that the triangles are congruent in each situation. If there is not enough information, note what is needed.



**2.** 
$$\overline{AB} \cong \overline{DC}; \overline{AE} \cong \overline{DE}$$

**3.** 
$$\angle B \cong \angle C; \overline{BE} \cong \overline{CE}$$

**4.** If you fold a square piece of paper on the diagonal, you get a special pair of right triangles. What are they and how can you prove that they are congruent?



### Read the scenario and use the figure below to answer Questions 5 and 6.

The pole is supported by 2 wires that are the same length.



**5.** How do you know the wires are fastened to the ground equal distances from the pole? Use complete sentences to explain your answer.



**6.**  $\overline{AC}$  is the perpendicular bisector of  $\overline{DB}$ . Complete the two-column proof to show that  $\angle D = \angle B$ .

| Statements                                                | Reasons |
|-----------------------------------------------------------|---------|
| <b>1.</b> $\overline{AC} \perp \overline{DB}$             | 1.      |
| <b>2.</b> $\angle ACD$ and $\angle ACB$ are right angles. | 2.      |
| <b>3.</b> $\angle ACD \cong \angle ACB$                   | 3.      |
| <b>4.</b> $\overline{DC} \cong \overline{BC}$             | 4.      |
| <b>5.</b> $\overline{AC} \cong \overline{AC}$             | 5.      |
| <b>6.</b> $\Delta ACD \cong \Delta ACB$                   | 6.      |
| <b>7.</b> $\angle D \cong \angle B$                       | 7.      |