Skills Practice

Skills Practice for Lesson 9.1

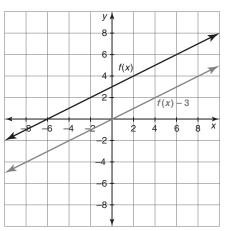
Name

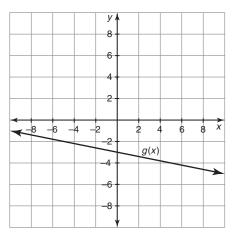
Date _____

Shifting Away Vertical and Horizontal Translations

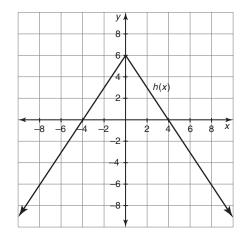
Vocabulary

Describe the similarities and differences between the two terms.

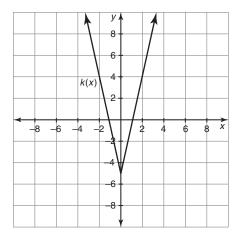

1. horizontal translation and vertical translation

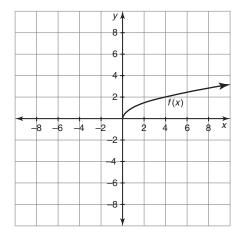

Problem Set

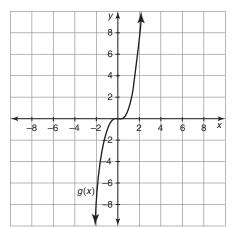
The graph of a function is shown. Sketch each translation of the function.


1. Sketch the graph of f(x) - 3.

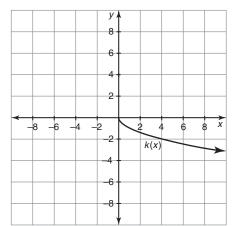
2. Sketch the graph of g(x) + 5.



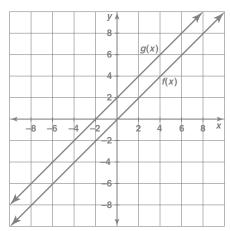

3. Sketch the graph of h(x + 4).


4. Sketch the graph of k(x - 3).

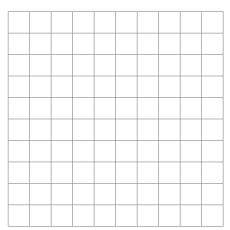
5. Sketch the graph of f(x) + 2.


6. Sketch the graph of g(x) - 4.

7. Sketch the graph of h(x + 5).

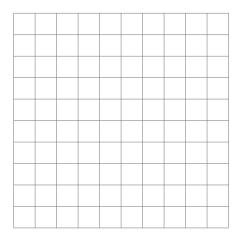


8. Sketch the graph of k(x - 2).

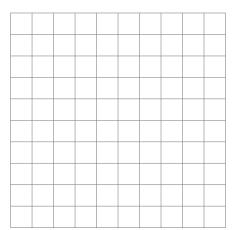


Graph each basic function f(x) and translation g(x) on the same grid.

9. f(x) = x and g(x) = x + 2

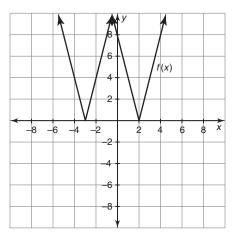

10. f(x) = x and g(x) = x - 5

11. $f(x) = x^2$ and $g(x) = x^2 - 4$

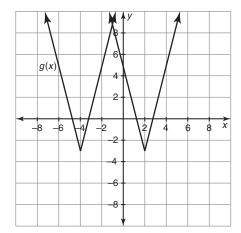

12. $f(x) = x^2$ and $g(x) = (x + 1)^2$

13. f(x) = |x| and g(x) = |x + 6|

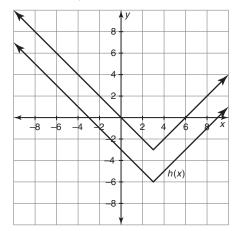
	_		 	
	_			
	_			


14. f(x) = |x| and g(x) = |x| - 3

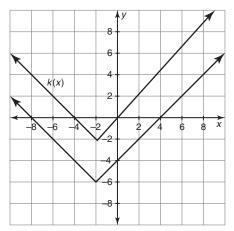
Nam	lame						_	Da	ate				 						
15.	f(x)	= -	√ <i>x</i> a	and	g(x)	= .	\sqrt{X} -	+ 2		16.	<i>f</i> (<i>x</i>)	= √	x a	nd g	y(x)	= √	\overline{x} –	5	

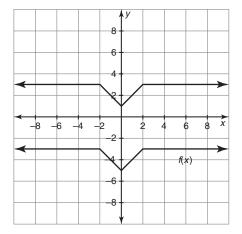

Given the graph of a function and its translation, write an equation for the translation in terms of the function.

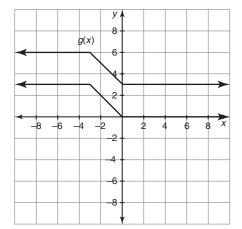
17. Write an equation for the translation in terms of f(x).

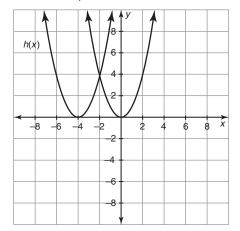


The translated graph is 5 units left of f(x), so the equation for the translation is f(x + 5).


18. Write an equation for the translation in terms of g(x).


19. Write an equation for the translation in terms of h(x).


20. Write an equation for the translation in terms of k(x).


21. Write an equation for the translation in terms of f(x).

22. Write an equation for the translation in terms of g(x).

23. Write an equation for the translation in terms of h(x).

24. Write an equation for the translation in terms of k(x).

	у 8	1 1	
	6	+	k(x)
	4	† <i> </i>	
	2	$\mathcal{U}\mathcal{I}$	
-8 -6	-4 -2/2		4 6 8 x
	-6	-	
	-8	L	

Skills Practice

Skills Practice for Lesson 9.2

Name _____

Date _____

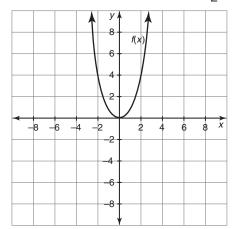
Expanding, Contracting, and Mirroring Dilations and Reflections

Vocabulary

Define each term using your own words.

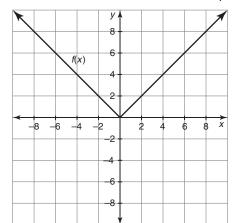

- 1. dilation
- 2. reflection
- 3. line of reflection

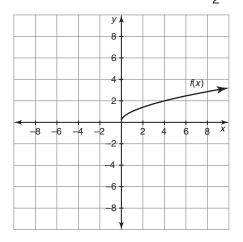
Problem Set


The graph of a function f(x) is shown. Sketch the graph of the dilated function, g(x).

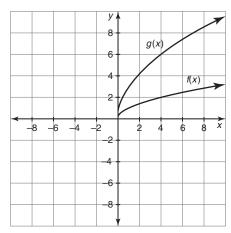
1. Sketch the graph of g(x), if g(x) = 2f(x).

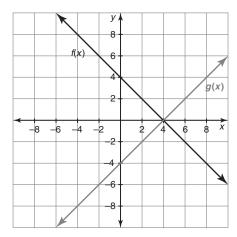
© 2009 Carnegie Learning, Inc.

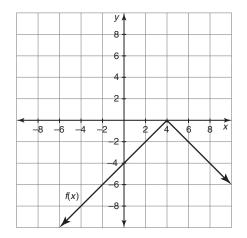

2. Sketch the graph of g(x), if $g(x) = \frac{1}{2}f(x)$.

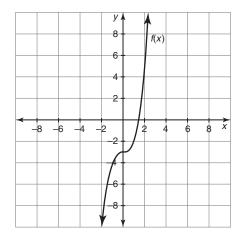

y I 8 6 f(x)2 x 8 -8 -6 -4 -2 2 4 6 -2 -6 -8

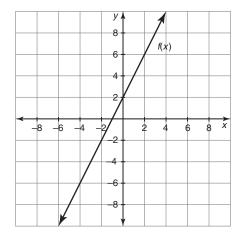
3. Sketch the graph of g(x), if $g(x) = \frac{1}{3}f(x)$.

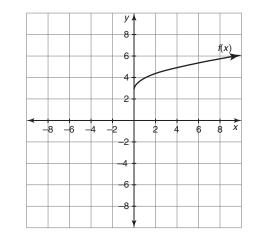

4. Sketch the graph of g(x), if $g(x) = \frac{1}{4}f(x)$.

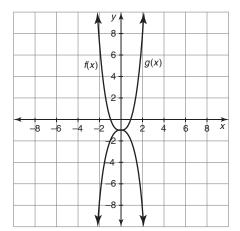

5. Sketch the graph of g(x), if $g(x) = \frac{1}{2}f(x)$.

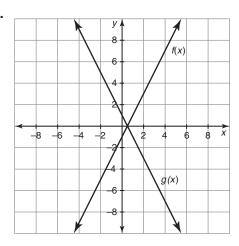

6. Sketch the graph of g(x), if g(x) = 3f(x).

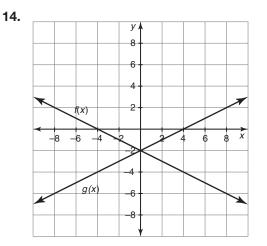

The graph of a function f(x) is shown. Sketch the graph of the reflected function, g(x).



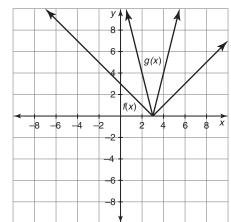

7. Sketch the graph of g(x), if g(x) = -f(x). 8. Sketch the graph of g(x), if g(x) = -f(x).

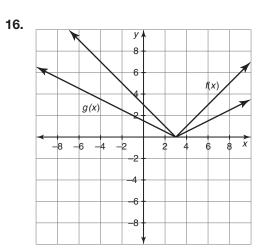

- **9.** Sketch the graph of g(x), if g(x) = f(-x). **10.** Sketch the graph of g(x), if g(x) = f(-x).
- © 2009 Carnegie Learning, Inc.

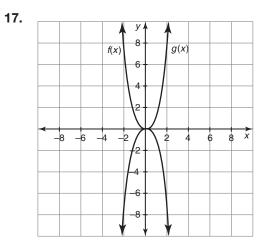

11. Sketch the graph of g(x), if g(x) = -f(-x). **12.** Sketch the graph of g(x), if g(x) = -f(-x).

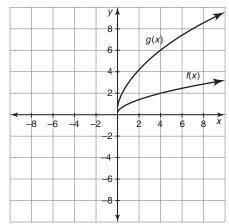

Given the graph of a function f(x) and its transformation g(x), write an equation for g(x) in terms of f(x).

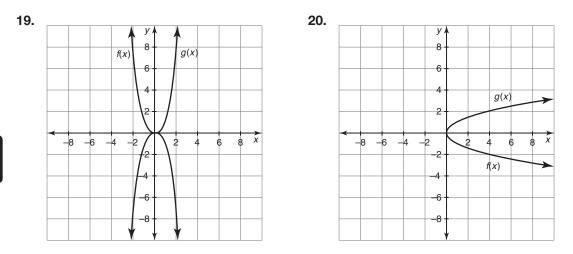
13.


9




The graph of g(x) is the graph of f(x) reflected in the *x*-axis, so g(x) = -f(x).





Complete the table to calculate the average rate of change for each function.

21. Complete the table to calculate the average rate of change from 0 to 10.

Function	Value at $x = 0$	Value at $x = 10$	Average Rate of Change
f(x) = x	f(0) = 0 = 0	f(10) = 10 = 10	$\frac{\Delta f(x)}{\Delta x} = \frac{f(10) - f(0)}{10 - 0} = \frac{10 - 0}{10} = 1$
g(x)=0.25 x	g(0) = 0.25 0 = 0	g(10) = 0.25 10 = 2.5	$\frac{\Delta g(x)}{\Delta x} = \frac{g(10) - g(0)}{10 - 0} = \frac{2.5 - 0}{10} = 0.25$
h(x)=6 x	h(0) = 6 0 = 0	h(10) = 6 10 = 60	$\frac{\Delta h(x)}{\Delta x} = \frac{h(10) - h(0)}{10 - 0} = \frac{60 - 0}{10} = 6$

Function	Value at $x = 0$	Value at $x = 25$	Average Rate of Change
$f(x)=\sqrt{x}$	<i>f</i> (0) =	f(25) =	$\frac{\Delta f(x)}{\Delta x} =$
$g(x)=0.1\sqrt{x}$	g(0) =	g(25) =	$\frac{\Delta g(x)}{\Delta x} =$
$h(x)=2\sqrt{x}$	h(0) =	h(25) =	$\frac{\Delta h(x)}{\Delta x} =$

22. Complete the table to calculate the average rate of change from 0 to 25.

23. Complete the table to calculate the average rate of change from 0 to 4.

Function	Value at $x = 0$	Value at $x = 4$	Average Rate of Change
$f(\mathbf{x}) = x^2$	<i>f</i> (0) =	f(4) =	$\frac{\Delta f(x)}{\Delta x} =$
$g(x)=0.5x^2$	<i>g</i> (0) =	g(4) =	$\frac{\Delta g(x)}{\Delta x} =$
$h(x)=3x^2$	h(0) =	h(4) =	$\frac{\Delta h(x)}{\Delta x} =$

© 2009 Carnegie Learning, Inc.

24. Complete the table to calculate the average rate of change from 0 to 5.

Function	Value at $x = 0$	Value at $x = 5$	Average Rate of Change
$f(\mathbf{x}) = x^3$	<i>f</i> (0) =	f(5) =	$\frac{\Delta f(x)}{\Delta x} =$
$g(x)=0.2x^3$	<i>g</i> (0) =	g(5) =	$\frac{\Delta g(\mathbf{x})}{\Delta x} =$
$h(x)=2x^3$	h(0) =	h(5) =	$\frac{\Delta h(x)}{\Delta x} =$

Given a function, evaluate the function for each value.

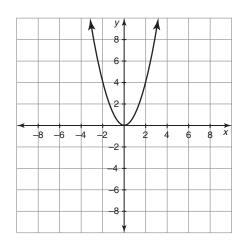
- **25.** If f(x) = 2x + 3 and g(x) = -f(x), evaluate f(5) and g(5). f(5) = 2(5) + 3 = 10 + 3 = 13g(5) = -f(5) = -13
- 9
- **26.** If $f(x) = \sqrt{x}$ and g(x) = -f(x), evaluate f(4) and g(4).
- **27.** If $f(x) = 4x^3$ and g(x) = f(-x), evaluate f(-3) and g(-3).
- **28.** If f(x) = 6x 2 and g(x) = f(-x), evaluate f(2) and g(2).
- **29.** If f(x) = 0.25x 4 and g(x) = -f(-x), evaluate f(8) and g(8).
- **30.** If $f(x) = x^3 + 7$ and g(x) = -f(-x), evaluate f(3) and g(3).

Skills Practice

Skills Practice for Lesson 9.3

9

Name _____

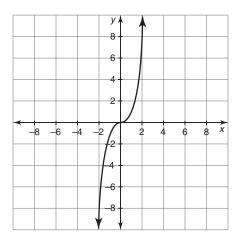

Date _____

Mirroring! Symmetry and Odd/Even

Vocabulary

Identify which figure is an example of the key term. Explain your answer.

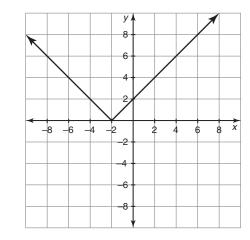
A.
$$y = x^2$$



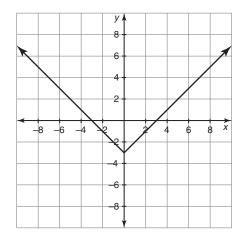
1. even function

2. odd function

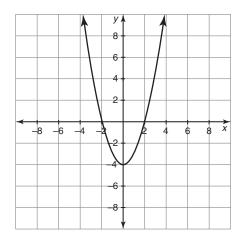
© 2009 Carnegie Learning, Inc.


B. $y = x^3$

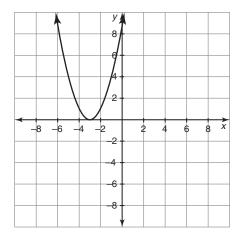
Problem Set


Determine whether each function has a line of symmetry. If so, identify the line of symmetry.

1. Identify the line of symmetry for the function y = |x + 2|.



The line of symmetry for the function is x = -2.


2. Identify the line of symmetry for the function y = |x| - 3.

3. Identify the line of symmetry for the function $y = x^2 - 4$.



4. Identify the line of symmetry for the function $y = (x + 3)^2$.



© 2009 Carnegie Learning, Inc.

5. Identify the line of symmetry for the function $y = x^3 + x^2$.

6. Identify the line of symmetry for the function $y = x^3 - x + 6$.

Classify each function as even, odd, or neither. Explain your answer.

7.
$$f(x) = x^3 - x$$

If $f(x)$ is even, then $f(x) = f(-x)$.
 $f(-x) = (-x)^3 - (-x) = -x^3 + x$
 $f(x)$ does not equal $f(-x)$ so $f(x)$ is not even.
If $f(x)$ is odd, then $f(x) = -f(-x)$.
 $-f(-x) = -(-x^3 + x) = x^3 - x$
 $f(x) = -f(-x)$ so $f(x)$ is odd.

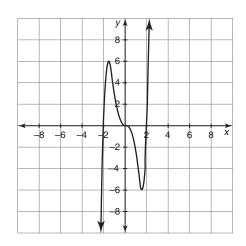
8.
$$f(x) = x^4 + x^2$$

9. $f(x) = x^2 + 2x$

10. $f(x) = x^3 - 3x^2$

Date _____

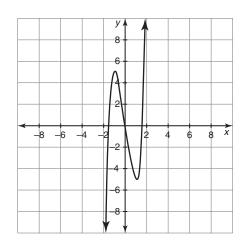
11. $f(x) = |x^3| + 4$


12. $f(x) = |x^2 + x|$

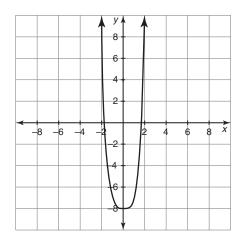
© 2009 Carnegie Learning, Inc.

Classify the function shown in each graph as even, odd, or neither. Explain your answer.

13. $f(x) = x^5 - 4x^3$



The function is odd.


Explanations may vary; sample answer:

Looking at the graph, for each value of x, f(x) = -f(-x). For example, f(2) = 0 = -f(-2).

15. $f(x) = x^4 - 8$

16. $f(x) = x^4 - 3x^2$

© 2009 Carnegie Learning, Inc.

		6			
		4			
		2			
-8 -	-6 -4 ·		2 4	6	8 ×
-8 -	-64 -		2 4	6	8 ×
-8 -	-64 -	-4 -4 -6		6	8 ×

Skills Practice

Name _____ Date _____

Machine Parts Solving Equations Graphically

Vocabulary

point of intersection	consistent
identity	inconsistent

Complete each statement with the correct term from the box.

- 1. Two equations are if the graphs of the two equations have at least one point of intersection.
- **2.** An ______ is an equation that is true for all values of *x*.
- 3. The is the location on a graph where two lines or functions intersect, indicating that the values at that point are the same.
- 4. Two equations are ______ if the graphs of the two equations do not have a point of intersection.

Problem Set

Write an equation that represents each situation.

1. An online store charges \$15 per T-shirt, plus a flat fee of \$6 for shipping. Write an equation for the total cost, *c*, of buying *t* T-shirts.

c = 15t + 6

- 2. A kitchen store charges \$4 per dish, plus a flat fee of \$8 for shipping. If d is the number of dishes and c is the total cost, write an equation for the total cost of buying dishes.
- 3. A phone plan costs \$30 per month, plus \$0.10 for each text message. If p is the total cost of the phone service and t is the number of text messages sent and received, write an equation for the total cost of the phone service for one month.

- **4.** A phone plan costs \$20 per month, plus \$0.25 for each text message. If *p* is the total cost of the phone service and *t* is the number of text messages sent and received, write an equation for the total cost of the phone service for one month.
- **5.** A bookstore charges \$25 for hardcover books, plus \$1.25 per item in shipping. Write an equation for the total cost, *c*, of buying *b* books.
- **6.** An online music store charges \$0.99 per song, plus \$0.05 tax per song. Write an equation for the total cost, *c*, of buying *s* songs.

Calculate the point(s) of intersection for each pair of functions algebraically.

7. $f(x) = x^2$ and g(x) = x + 20 $x^2 = x + 20$ $0 = x^2 - x - 20$ 0 = (x - 5)(x + 4) x = 5 or x = -4 $f(5) = 5^2 = 25$ $f(-4) = (-4)^2 = 16$

The two points of intersection are (5, 25) and (-4, 16).

8. f(x) = 4x and $g(x) = x^2 + 4$

9. f(x) = 5x - 1 and g(x) = 2x + 26

10. f(x) = x + 15 and g(x) = 3x - 11

11. $f(x) = x^3 + x^2 - x - 1$ and g(x) = (x + 1)(x - 1)(x + 1)

© 2009 Carnegie Learning, Inc.

12. f(x) = (x - 2)(x - 1)(x + 2) and $g(x) = x^3 - x^2 - 4x + 4$

Use the given information to answer each question.

13. Company A charges a flat fee of \$25 per month plus \$0.15 per text message for phone service. Company B charges a flat fee of \$35 per month with unlimited text messages. If Devon sends 80 text messages during the month, which company's plan would be less expensive?

Company A: c = 25 + 0.15t

c = 25 + 0.15(80) = 25 + 12 = 37

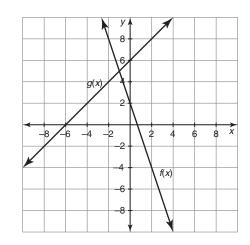
Company A's plan would cost \$37 for the month, so company B's plan would be less expensive for Devon.

14. Gym A charges a flat fee of \$90 per month for members. Gym B charges a flat fee of \$40 per month, plus \$5 per visit. If Emily visits the gym 12 times each month, which gym would be less expensive?

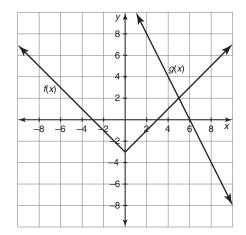
Name	Da	ate

15. Bookstore A charges \$14 per book plus a \$5 flat fee for shipping. Bookstore B charges \$12 per book, plus a shipping fee of \$1.50 per book. If Manisha wants to buy 8 books, which company should she buy them from?

16. Company A charges a flat fee of \$5 per month plus \$1.20 per song for music downloads. Company B charges a flat fee of \$20 per month, plus \$0.25 per song. If Jason downloads 35 songs during the month, which company's plan would be less expensive?

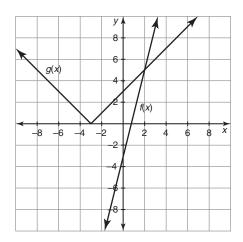

Solve for the point(s) of intersection graphically.

17. f(x) = 2x - 5 and g(x) = -x + 1



The point of intersection is (2, -1).

18. f(x) = -3x + 2 and g(x) = x + 6



19. f(x) = |x| - 3 and g(x) = -2x + 12

9

20. f(x) = 4x - 3 and g(x) = |x + 3|

© 2009 Carnegie Learning, Inc.