Georgia Performance Standard(s)
MM1P1d, MM1P3a

Your Notes

Use a Problem Solving Plan

Goal - Use a problem solving plan to solve problems.

VOCABULARY

Formula

A PROBLEM SOLVING PLAN

Step 1 \qquad Read the problem carefully. Identify what you know and what you want to find out.

Step 2 \qquad Decide on the approach to solving the problem.
Step 3 \qquad Carry out your plan.
Try a new approach if the first one isn't successful.
Step 4 \qquad Once you obtain your answer, check to see that it is reasonable.

Example 1 Read a problem and make a plan

You have $\mathbf{\$ 7}$ to buy orange juice and bagels at the store. A juice box costs $\mathbf{\$ 1 . 2 5}$ and a bagel costs $\mathbf{\$. 7 5}$. If you buy two juice boxes, how many bagels can you buy?

Solution

Step 1
What do you know? You know how much money you have, the price of a \qquad , and the price of a juice box.
What do you want to find out? You want to find out the number of \qquad you can buy.

Step 2 \qquad Use what you know to write a \qquad that represents what you want
to find out. Then write an \qquad and solve it.

Example 2 Solve a problem and look back

Solve the problem in Example 1 by carrying out the plan. Then check your answer.

Step 3
Write a verbal model. Then write an equation. Let b be the number of bagels.

The equation is $+\quad b=\quad$. Solve the equation using the strategy guess, check, and revise.
Guess an even number that is easily multiplied by \qquad . Try 4.
\qquad $+$ \qquad $b=$ \qquad Write equation.
\qquad $+$ \qquad (4) ? ? \qquad Substitute 4 for b. Simplify; 4 \qquad check.

Because \qquad , try an even number \qquad 4. Try 6.

+	
+	$b={ }_{-}$
$(6) \stackrel{?}{=}-$	Write equation.
	Substitute 6 for b.
	Simplify.

For \qquad you can buy \qquad bagels and \qquad juice boxes.

Step 4 \qquad Each additional bagel you buy adds
\qquad to the total cost. Make a table.

Bagels	0	1	2	3	4	5	6
Total Cost							

The total cost is \qquad when you buy \qquad bagels and \qquad juice boxes. The answer in Step 3 is

In Exercises 1-3, identify what you know and what you need to find out. You do not need to solve the problem.

1. In science class, you compare the growths of plants subject to different conditions. Plant A grows 25 inches in the same amount of time plant B grows 17.5 inches. How many times taller is plant A than plant B?
2. Your class plans to make a mosaic mural out of 1 -inch by 1 -inch colored tiles. The rectangular mural is 8 feet long and 4 feet tall. How many tiles does your class need to make the mural?
3. Your baseball team raises $\$ 240$ to buy new T-shirts and hats. It costs $\$ 15$ for each of the 20 players to have a T-shirt and a hat. How much more money does each player have to pay to cover the cost?

In Exercises 4 and 5, state the formula that is needed to solve the problem. You do not need to solve the problem.

4. The temperature is $74^{\circ} \mathrm{C}$. What is the temperature in degrees Fahrenheit?
5. You travel 150 miles to your cousin's house at a rate of 50 miles per hour. When will you get to your cousin's house?
\qquad

${ }_{1.1}^{1.1}$ Practice ontinued

6. Stamp Collection Your stamp collection consists of 120 stamps. Each stamp has either a cancellation mark or no cancellation mark. There are 75 more stamps with cancellation marks than stamps without cancellation marks. Let x be the number of stamps without cancellation marks. Which equation correctly models this situation?
A. $x+75=120$
B. $x+(x+75)=120$
C. $x+(x-75)=120$
7. Picnic You are responsible for buying the hamburger rolls for an upcoming picnic. Each bag of rolls costs $\$ 1.30$ and contains 8 rolls. You need to buy a total of 64 rolls. How much money will it cost for the rolls?
8. Temperature Yesterday's high and low temperatures were $50^{\circ} \mathrm{F}$ and $41^{\circ} \mathrm{F}$, respectively. What are these temperatures in degrees Celsius?
9. Sandbox A civic group builds a sandbox that is enclosed by 1 -foot wide railroad ties. The group needs to find the area inside the sandbox to find the amount of sand needed. Use the figure and the formula for area to write an expression that represents the area inside the sandbox.

1,2 Represent Functions as Rules and Tables

Georgia Performance Standard(s) MM1A1d	Goal •Represent functions as rules and as tables.
Your Notes	VOCABULARY Function Domain Range Independent variable Dependent variable

Example 1 Identify the domain and range of a function

The input-output table shows temperatures over various increments of time. Identify the domain and range of the function.

Input (hours)	0	2	4	6
Output ($\left.{ }^{\circ} \mathbf{C}\right)$	24	27	30	33

Solution

The domain is the set of inputs: \qquad .

The range is the set of outputs: \qquad .

Example 2 Make a table for a function

The domain of the function $y=3 x$ is $0,1,2$, and 3 .
Make a table for the function, then identify the range of the function.

Solution

x				
$y=3 x$				
y				

The range of the function is \qquad .

Example 3 Write a function rule

Write a rule for the function.

Input	3	5	7	9	11
Output	6	10	14	18	22

Solution

Let x be the input and let y be the output. Notice that each output is \qquad the corresponding input. So, a rule for the function is \qquad .

Checkpoint Complete the following exercises.

1. The domain of the function $y=x-1$ is $1,4,5$, and 8 . Make a table for the function, then identify the range of the function.
2. Write a rule for the function. Identify the domain and range.

Input	1	2	3	4
Output	1.5	3	4.5	6

\qquad
\qquad

LEsSoN

1.2

Practice

Complete the sentence.

1. The collection of all output values is called the \qquad of a function.
2. The collection of all input values is called the \qquad ? of a function.

Identify the domain and range of the function.

3.

Input	Output
1	8
3	7
5	6
7	5

4.

Input	Output
7	4
2	2
5	1
3	5

5.

Input	Output
0.4	15
0.5	13
0.6	11
0.7	9

Tell whether the pairing is a function.
6.

Input	Output
3	8
6	3
9	4
12	7

7.

Input	Output
6	3
3	1
0	2
3	4

8.

Input	Output
10	9
11	3
12	6
13	9

\qquad

${ }_{1.2}$ Practice ${ }_{\text {continued }}$

Make a table for the function. Identify the range of the function.

9. $y=5 x$

Domain: 0, 1, 2, 3
10. $y=x+2$

Domain: 11, 15, 22, 27
11. $y=x-5$

Domain: 5, 9, 14, 19
12. Flower Garden You have a flat of 12 flowers to plant in your garden.
a. Write a rule for the number of flowers y you have left in the flat as a function of the number of flowers x you have put in the garden so far.
b. Make a table and identify the range of the function.
13. Centerpieces A florist makes centerpieces for a charity event. She uses 9 flowers in each centerpiece. Write a rule for the total number of flowers used as a function of the number of centerpieces created.
14. Kickboxing You join a kickboxing class at a local gym. The cost is $\$ 5$ per class plus $\$ 25$ for the initial membership fee. Write a rule for the total cost of the class in dollars as a function of the number of classes you attend. How much will it cost if you attend 8 classes?

Georgia Performance Standard(s)

MM1A1d

Your Notes

Represent Functions as Graphs
Goal •Represent functions as graphs.

Example 1 Graph a function

Graph the function $y=x+1$ with domain $1,2,3,4$, and 5.

Solution

Step 1 Make an \qquad table.

x	-	-	-	-	-
y	-	-	-	-	-

Step 2 Plot a point for each \qquad (x, y).

Checkpoint Complete the following exercise.

1. Graph the function $y=\frac{1}{3} x+1$ with domain $0,3,6$, 9 , and 12.

Example 2 Write a function rule for a graph
Write a rule for the function represented by the graph. Identify the domain and the range of the function.

Solution

Step 1 Make a \qquad for the graph.

\boldsymbol{x}	-	-	-		
\boldsymbol{y}	-	-	-	-	-

Step 2 Find a \qquad between the inputs and outputs.
\qquad

Step 3 Write a \qquad that describes the relationship: $y=$ \qquad .

The domain of the function is \qquad .

The range is \qquad .

Checkpoint Write a rule for the function represented by the graph. Identify the domain and the range of the function.

\qquad
\qquad
LISSON
1.3

Practice

Write the ordered pairs that can be formed from the table.

1.

Input	Output
0	2
1	4
2	6
3	8

2.

Input	Output
3	2
6	2
9	2
12	2

3.

Input	Output
10	4
9	8
8	12
7	16

Identify the ordered pairs in the graph. Then identify the domain and range.
4.

5.

6.

Graph the function.

7. $y=x+5$

Domain: 0, 1, 2, 3

8. $y=x-3$

Domain: 6, 5, 4, 3

9. $y=3 x$

Domain: 1, 3, 5, 7

\qquad
\qquad

LESSON 1.3 Practice continued

Match the rule for the function with its graph.

10. $y=6 x$
11. $y=6 x-1$
12. $y=x+6$
13. $y=\frac{1}{6} x$
14. $y=x-6$
B.

.
D.

A.

E.
F.

15. Hourly Pay The table shows the pay d (in dollars) as a function of the number of hours worked h. Graph the function.

Hours worked, \boldsymbol{h}	1	2	3	5	8
Pay (dollars), \boldsymbol{d}	6.75	13.50	20.25	33.75	54

Georgia Performance Standard(s)

MM1A1b, MM1A1d

Your Notes

Goal - Graph a linear equation using intercepts.

VOCABULARY

x-intercept
y-intercept

Example 1 Find the intercepts of a graph of an equation

Find the x-intercept and the y-intercept of the graph of $8 x-2 y=32$.

Solution

To find the x-intercept, substitute

$$
8 x-2 y=32
$$

$8 x-2(\ldots)=32$

$$
x=\frac{\square}{\square}=
$$

To find the y-intercept, substitute \qquad for x and solve for y. Write original equation.

Substitute \qquad for x.

Solve for \qquad .

The x-intercept is \qquad . The y-intercept is \qquad .
. Checkpoint Find the x-intercept and y-intercept of the graph of the equation.

1. $2 x+3 y=18$	2. $-12 x-4 y=36$

Example 2 Use a graph to find the intercepts

Identify the x-intercept and y-intercept of the graph.

Solution

To find the x-intercept, look to see where the graph crosses the \qquad . The x-intercept is \qquad . To find the y-intercept, look to see where the graph crosses the \qquad . The y-intercept is \qquad .

Checkpoint Complete the following exercise.
3. Identify the x-intercept and y-intercept of the graph.

Example 3 Use intercepts to graph an equation

Graph $3.5 x+2 y=14$. Label the points where the line crosses the axes.

Solution

Step 1 Find the \qquad .

$$
\begin{array}{r|r}
3.5 x+2 y=14 & 3.5 x+2 y=14 \\
3.5 x+2(\square)=14 & 3.5\left(_\right)+2 y=14 \\
x=\frac{\square}{\square}=\square
\end{array}
$$

Step 2 Plot the points that correspond to the intercepts. The x-intercept is \qquad , so plot and label the point \qquad The y-intercept is \qquad , so plot and label the point \qquad .
Step 3 \qquad the points by drawing a line through them.

CHECK

You can check the graph of the equation by using a third point. When $x=2, y=$ \qquad , so the ordered pair is a third solution of the equation. You can see that \qquad lies on the graph, so the graph is correct.

Checkpoint Complete the following exercise.
4. Graph $2 x-7 y=14$. Label the points where the line crosses the axes.

\qquad
\qquad
${ }^{14}{ }^{14}$ Practice
Identify the \boldsymbol{x}-intercept and the \boldsymbol{y}-intercept of the graph.
1.

2.

3.

6.

Find the x-intercept of the graph of the equation.
7. $x+y=9$
8. $x-y=4$
9. $x-y=-1$
10. $3 x+y=15$
11. $4 y-x=18$
12. $2 x+5 y=14$
13. $2 x+3 y=12$
14. $3 y-7 x=35$
15. $9 x-4 y=10$
\qquad

LESSON
 1.4
 Practice
 continued

Find the \boldsymbol{y}-intercept of the graph of the equation.

16. $x+y=-7$
17. $x-y=11$
18. $x+4 y=24$
19. $6 x-y=7$
20. $9 y-8 x=27$
21. $4 x+5 y=20$

Draw the line that has the given intercepts.
25. x-intercept: 2
y-intercept: 1

26. x-intercept: -4
y-intercept: 3

18. $y-x=6$
21. $5 x+2 y=16$
24. $3 x-5 y=15$
27. x-intercept: 3
y-intercept: -5

\qquad

\section*{| LESSON | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1.4 | continued |}

Match the equation with its graph.

28. $x+y=2$
29. $x-y=2$
30. $y-x=2$
A.

B.

C.

Graph the equation. Label the points where the line crosses the axes.
31. $y=x+6$

32. $y=x-3$

33. $y=2 x+8$

LESSON
 1.4
 Practice continued

34. Club Membership The computer club at your school is open to juniors and seniors. There are now 24 members in the club. Let x be the number of junior members and let y be the number of senior members.
a. Write an equation for the total number of members in the club.

b. Find the intercepts of the equation.
c. Graph the equation.
35. Ticket Sales You sold tickets to the school play. Advance tickets were $\$ 6$. Tickets sold at the door were $\$ 8$. Total ticket sales were $\$ 480$. This situation can be represented by the equation $6 x+8 y=480$ where x is the number of advance tickets sold and y is the number of tickets sold at the door.
a. Find the intercepts of the graph of the equation.

b. Graph the equation.
c. If 52 advance tickets were sold, how many tickets were sold at the door?

Georgia Performance Standard(s)

MM1A1g

Your Notes

VOCABULARY

Slope

 y-coordinates in the same order in the numerator and denominator when calculating slope. This will help avoid error.

Goal - Find the slope of a line and interpret slope as a rate of change.

Rate of change

Example 1 Find a positive slope

Find the slope of the line shown.

Solution

Let $\left(x_{1}, y_{1}\right)=(-1,2)$
and $\left(x_{2}, y_{2}\right)=(3,5)$.
$m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$
Write formula
for slope.

Substitute.
$=\quad$ Simplify.
The line \qquad from left to right. The slope
is \qquad .

Example 2 Find a negative slope
Find the slope of the line shown.

Solution

Let $\left(x_{1}, y_{1}\right)=(1,4)$
and $\left(x_{2}, y_{2}\right)=(3,-2)$.
$m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$
Write formula for slope.

$=\frac{\square-4}{\square-1} \quad$ Substitute.
$=\quad$ Simplify.
$=$ \qquad Simplify.
The line \qquad from left to right. The slope is
\qquad .

Checkpoint Find the slope of the line passing through the points.

1. $(-3,-1)$ and ($-2,1$)
2. $(-6,3)$ and $(5,-2)$

Example 3 Find the slope of a line

Find the slope of the line shown.
a.

b.

Solution

a. Let $\left(x_{1}, y_{1}\right)=(2,5)$ and $\left(x_{2}, y_{2}\right)=(-4,5)$.

$$
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{5-\square}{-4-\square}=\square=
$$

The line is \qquad . The slope is \qquad .
b. Let $\left(x_{1}, y_{1}\right)=(4,-2)$ and $\left(x_{2}, y_{2}\right)=(4,3)$.
$m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{3-\square}{4-\square}=$
The line is \qquad . The slope is \qquad .

Checkpoint Find the slope of the line passing through the points. Then classify the line by its slope.
3. $(1,-2)$ and $(1,3)$
4. $(-3,7)$ and $(4,7)$

Example 4 Find a rate of change

Gas Prices The table shows the cost of a gallon of gas for several days. Find the rate of change in price with respect to time.

Time (days)	Day 1	Day 3	Day 5
Price/gal (\$)	1.99	2.09	2.19

Rate of change $=\frac{\text { change in cost }}{\text { change in time }} \quad$ Write formula.

$$
=\frac{2.09-\square}{3-\square} \quad \text { Substitute. }
$$

$$
=\frac{\square}{\square}=\quad \text { Simplify. }
$$

The rate of change in price is \qquad per day.

Checkpoint Complete the following exercise.

5. The table shows the temperature of a solution over time. Find the rate of change in temperature with respect to time.

Temperature (${ }^{\circ}$ F)	Time (hours)
38	0
43	2
48	4
53	6

\qquad
\qquad

LESSON
 1.5
 Practice

Tell whether the slope of the line is positive, negative, zero, or undefined.
1.

2.

3.

4.

5.

6.

Plot the points and draw a line through them. Without calculating, tell whether the slope of the line is positive, negative, zero, or undefined.
7. $(1,0)$ and $(5,3)$

8. $(-3,-2)$ and $(5,-2)$

9. $(-4,2)$ and $(3,-5)$

12. $(6,7)$ and $(7,6)$

\qquad
\qquad

Find the slope of the line that passes through the points.

13.

16.

19.

17.

20.

15.

(-3		$\stackrel{\|c\| c}{y}$	
	-3		
\longleftarrow		1	$3 x$

18.

21.

\qquad

Find the slope of the line that passes through the points.
22. $(0,4)$ and $(3,7)$
23. $(2,5)$ and $(3,0)$
24. $(1,2)$ and $(2,5)$
25. $(4,-8)$ and $(-3,6)$
26. $(4,1)$ and $(3,7)$
27. $(4,8)$ and $(6,10)$
28. $(-3,7)$ and $(1,-1)$
29. $(4,5)$ and $(-6,5)$
30. $(3,-2)$ and $(3,4)$

Find the value of \boldsymbol{y} so that the line passing through the two points has the given slope.
31. $(0, y),(2,7) ; m=\frac{1}{2} \quad$ 32. $(5,4),(2, y) ; m=-\frac{1}{3} \quad$ 33. $(4,2),(5, y) ; m=4$
\qquad

ESSON
 1.5
 Practice continued

34. Plant and Flower Sales The table shows the amount of money (in dollars) spent by a household on plants and flowers for several years. Describe the rates of change in the number of dollars spent during the time period.

Year	2001	2002	2003	2004	2005
Amount spent (dollars)	127	134	139	137	136

35. Broadway Shows The graph shows the number of new Broadway show productions for several years.
a. Describe the rates of change in the number of shows with respect to time.

b. Determine the time interval(s) during which the number of new shows showed the greatest rate of change.
c. Determine the time interval during which the number of new shows showed the least rate of change.

Georgia

 Performance Standard(s)MM1A1b, MM1A1d

Your Notes

Goal - Graph linear equations using slope-intercept form.

VOCABULARY

Slope-intercept form

Parallel

Perpendicular

Example 1 Identify the slope and y-intercept

Identify the slope and y-intercept of the line with the given equation.
a. $y=x+3$
b. $-2 x+y=5$

Solution

a. The equation is in the form \qquad . So, the slope of the line is \qquad , and the y-intercept is \qquad .
b. Rewrite the equation in slope-intercept form by solving for \qquad .

$$
\begin{aligned}
-2 x+y & =5 & & \text { Write original equation. } \\
y & = & & \text { Add } \quad \text { to each side. }
\end{aligned}
$$

The line has a slope of \qquad and a y-intercept of \qquad .

Checkpoint Identify the slope and y-intercept of the line with the given equation.

1. $y=4 x-1$
2. $4 x-2 y=8$

Example 2 Graph an equation using slope-intercept form

Graph the equation $4 x+y=2$.

Solution

Step 1 Rewrite the equation in slope-intercept form.

Step 2 \qquad the slope and the y-intercept.

$$
m=
$$

\qquad
$b=$ \qquad

Step 3 \qquad the point that corresponds to the y-intercept, (\qquad).

Step 4 Use the slope to locate a second point on the line. Draw a line through the two points.

Checkpoint Complete the following exercise.
3. Graph the equation $-\frac{1}{2} x+y=1$.

Example 3 Identify parallel and perpendicular lines
Determine which of the lines are parallel or perpendicular: line a through ($-4,-2$) and (2,4), line b through ($-1,4$) and (5, -5), line c through ($-3,-4$) and (6, 2), and line d through ($-2,-3$) and (4, 3).

Solution

Find the slope of each line.

Line a:

Line b :

$$
=
$$

Line c:

$$
=
$$

$-(-3)$ $\square=$
\qquad
Line d :

\qquad
Lines \qquad and \qquad have the same slope, so they are \qquad . Lines \qquad and \qquad have slopes that are negative reciprocals, so they are \qquad -

Checkpoint Complete the following exercise.
4. Determine which of the lines are parallel or perpendicular.
Line a: through $(2,5)$ and $(-2,2)$
Line b : through $(4,1)$ and $(-3,-4)$
Line c : through $(2,3)$ and $(-2,0)$
Line d : through $(-8,6)$ and $(2,-8)$
\qquad

LEsSoN 1.6

Practice

Identify the slope and y-intercept of the line whose graph is shown.

1.

2.

3.

4.

5.

6.

Identify the slope and \boldsymbol{y}-intercept of the line with the given equation.
7. $y=3 x+4$
8. $y=5 x-2$
9. $y=-2 x+8$
10. $y=\frac{1}{2} x$
11. $y=-\frac{3}{4} x-1$
12. $y-4 x=4$
\qquad

\section*{| LESSON | |
| :---: | :---: | :---: | :---: |
| 1.6 | PGO continued |}

Graph the equation.

13. $y=x+5$

14. $y=-4 x+1$

15. $y=\frac{1}{3} x+2$

16. $y=-\frac{1}{4} x+3$

17. $y=x-7$

18. $y=-3 x-1$

19. $y=\frac{1}{5} x-4$

20. $y=-\frac{1}{2} x-4$

21. $y=2 x-3$

22. $y=6 x$

23. $y=\frac{2}{3} x-4$

24. $y=\frac{1}{3} x+1$

Tell whether the graphs of the two equations are parallel lines, perpendicular lines, or neither.

25. $y=3 x-1, y=4+3 x$
26. $y=5 x+2, y=6-5 x$
27. Landscape Architect A landscape architect charges $\$ 100$ for an initial consultation and then charges $\$ 85$ an hour to design the landscaping for an area. The total cost C (in dollars) is given by the equation $C=100+85 t$ where t is the time (in hours) the architect works on the design.
a. Graph the equation.
b. Suppose the architect raises the fee for the initial consultation
 to $\$ 125$ so that the total cost of a design that takes t hours to create is given by the equation $C=125+85 t$. Graph the equation on the same coordinate plane as the equation in part (a).
c. How much more does it cost for a design if it takes the architect 6 hours to create the design?
28. Drum Lessons You are taking drum lessons at a studio. Last year, the studio charged $\$ 10$ per lesson. This year, the studio raised its rates and charges $\$ 12$ per lesson. The total fee f (in dollars) for taking lessons last year is given by the equation $f=10 \ell$ where ℓ is the number of lessons you took. The total fee this year is given by the equation $f=12 \ell$. Graph the equations in the same coordinate plane. Use the graphs to find the difference between the fees a person could be charged for taking 48 lessons.

Georgia Performance Standard(s)

MM1A1a, MM1A1b, MM1A1c

Your Notes

Graph Linear Functions

Goal - Use function notation.

VOCABULARY

Function notation

Family of functions

Parent linear function

Example 1 Find a function value

Evaluate $f(x)=-5 x+1$ when $x=3$.

Solution

$$
\begin{aligned}
f(x) & =-5 x+1 & & \text { Write original function. } \\
f\left(_\right) & =-5\left(_\quad\right)+1 & & \text { Substitute for } x . \\
& = & & \text { Simplify. }
\end{aligned}
$$

When $x=3, f(x)=$ \qquad .

Example 2 Find an x-value

For the function $f(x)=3 x+1$, find the value of x so that $f(x)=10$.

Solution

$$
\begin{aligned}
f(x)=3 x+1 & \begin{array}{l}
\text { Write original function. } \\
\\
=3 x+1 \\
\end{array} \quad x \\
\text { When } x=\ldots, f(x)=10 . & \text { Substitute } \quad \text { Solve for } x(x) .
\end{aligned}
$$

1. Evaluate $f(x)=7 x+3$ when $x=2$.
2. For $f(x)=6 x-6$, find the value of x so that $f(x)=24$.

Example 3 Compare graphs with the graph of $f(x)=x$

Graph the function. Compare the graph with the graph of $f(x)=x$.
a. $p(x)=x-4$
b. $r(x)=x+2$

Solution

a. Because the graphs of p and f have the same slope, $m=1$, the lines are \qquad . Also, the y-intercept of the graph of p is \qquad less than the y-intercept of the graph of f. The graph of p is a \qquad from the graph of f.

b. Because the graphs of r and f have the same slope, $m=1$, the lines are \qquad . Also, the y-intercept of the graph of r is \qquad more than the y-intercept of the graph of f. The graph of r is a \qquad from the graph of f.
 of $f(x)=x$.
a. $q(x)=4 x$
b. $h(x)=\frac{1}{6} x$

Solution

a. The graph of q is $\quad f(x)$ which means each value of f is multiplied by \qquad . The graph of q is a vertical
\qquad of the graph of f using a scale factor of \qquad .

b. The graph of h is $f(x)$ which means each value of f is multiplied by . The graph of h is a vertical
\qquad of the graph of f using a scale factor of \qquad

v Checkpoint Graph the function. Compare the graph with the graph of $f(x)=x$.

Example 5 Compare graphs

Graph the functions. Compare the graphs.

a. $g(x)=x+1$,
$h(x)=-x+1$
b. $p(x)=x-2$,
$q(x)=-x+2$

Solution

a. The graph of h is a reflection of the graph of g in the \qquad .

b. The graph of q is a reflection of the graph of p in the \qquad .

Checkpoint Complete the following exercise.
5. Graph $v(x)=\frac{1}{2} x-3$ and $w(x)=-\frac{1}{2} x+3$.

Compare the graphs.

\qquad
\qquad

LESSON
 1.7
 Practice

Evaluate the function when $\boldsymbol{x}=-3,0$, and 2.

1. $f(x)=10 x+3$
2. $g(x)=7 x-5$
3. $p(x)=-x+4$
4. $p(x)=x+9$
5. $d(x)=-3 x+1$
6. $f(x)=4 x-3$
7. $h(x)=-2 x+11$
8. $m(x)=-5 x-8$
9. $f(x)=1.1 x$
10. $s(x)=-3.2 x$
11. $d(x)=\frac{1}{3} x$
12. $h(x)=-\frac{1}{4} x$

Find the value of \boldsymbol{x} so that the function has the given value.
13. $h(x)=x+12 ; 9$
14. $m(x)=3 x-2 ; 7$
15. $p(x)=-2 x+5 ;-1$
16. $f(x)=4 x+3 ; 9$
17. $g(x)=-x+8 ; 1$
18. $h(x)=6 x-5 ; 7$
19. $m(x)=-8 x+10 ;-6$
20. $p(x)=8 x+22 ; 6$
21. $d(x)=-5 x-3 ; 2$
22. $f(x)=2 x-8 ; 0$
23. $g(x)=-5 x+10 ; 20$
24. $h(x)=-8 x+10 ;-6$
\qquad ${ }_{1.7}^{1 \text { waw }}$ Practice contined

Compare the graph of $\boldsymbol{g}(x)$ to the graph of $\boldsymbol{f}(x)=x$.

25.

28.

26.

29.

27.

30.

\qquad

LESSON 1.7
 Practice
 continued

Graph the function. Compare the graph of $\boldsymbol{g}(\boldsymbol{x})$ to the graph of $\boldsymbol{f}(\boldsymbol{x})=\boldsymbol{x}$.

31. $g(x)=x+4$

				y	y		

32. $g(x)=x-3$

33. $g(x)=\frac{1}{5} x$

Graph the functions. Compare the graphs.
34. $g(x)=x+3, h(x)=-x+3$

35. $p(x)=x-5, q(x)=-x+5$

\qquad

${ }_{1.7}$ Mraw Practice oninined

36. Savings The value of a savings account (in dollars) from 1990 to 2006 can be modeled by the function $f(x)=106 x+185$ where x is the number of years since 1990.
a. Graph the function and identify its domain and range.

b. Find the value of $f(x)$ when $x=5$. Explain what the solution means in this situation.
c. Find the value of x so that $f(x)=1000$. Explain what the solution means in this situation.
37. Newspapers The average monthly cost (in dollars) of a subscription to a newspaper from 2000 to 2006 can be modeled by the function $f(x)=1.56 x+21.5$ where x is the number of years since 2000 .
a. Graph the function and identify its domain and range.

b. Find the value of x so that $f(x)=28$. Explain what the solution means in this situation.

Georgia Performance Standard(s)

MM1A1d
VOCABULARY

Your Notes

Predict with Linear Models

Goal - Make predictions using best-fitting lines.

Best-fitting line

Linear interpolation

Linear extrapolation

Zero of a function

Example 1 Interpolate using an equation

Salaries The table shows a company's annual salary expenditure (in thousands of dollars) from 2000 to 2004.

Year	2000	2002	2003	2004
Annual Salary Expenditure (in thousands of dollars)	585	708	787	986

a. Make a scatter plot of the data.
b. Find an equation that models the annual salary expenditure (in thousands of dollars) as a function of the number of years since 2000.
c. Approximate the annual salary expenditure in 2001.

Solution

a. Enter the data into lists on a graphing calculator. Make a scatter plot, letting the number of years since 2000 be the \qquad (0, 2, 3, 4) and the annual salary
 expenditure be the \qquad .
b. Use a calculator to find the best-fitting line. The equation of the best-fitting line is $y=$ \qquad .
c. Graph the best-fitting line.
 Use the trace feature and the arrow keys to find the value of the equation when $x=$ \qquad .
The annual salary expenditure in 2001 was
\qquad thousand dollars.

Salaries Look back at Example 1.
a. Use the equation from Example 1 to approximate the annual total salary expenditure in 2005 and 2006.
b. In 2005, the annual total salary expenditure was actually 1180 thousand dollars. In 2006, the annual total salary expenditure was actually 1259 thousand dollars. Describe the accuracy of the extrapolations made in part (a).

Solution

a. Evaluate the equation of the best-fitting line from Example 1 for $x=$ \qquad and $x=$ \qquad . The model predicts the average annual salary expenditure as \qquad thousand dollars in 2005 and \qquad thousand dollars in 2006.
b. The differences between the predicted annual salary expenditure and the actual annual salary expenditure in 2005 and 2006 are \qquad thousand dollars and \qquad thousand dollars, respectively. The difference in actual and predicted annual salary expenditures increased from 2005 to 2006. So, the equation of the best-fitting line gives a less accurate prediction for years farther from the given data.

Checkpoint Complete the following exercise.

1. Population The table shows the population of a town from 2002 to 2006.

Year	2002	2004	2005	2006
Population	1337	1607	1896	2139

Find an equation that models the population as a function of the number of years since 2002. Approximate the population in 2003, 2007, and 2008.

Public Transit The percentage y of people in the U.S. that use public transit to commute to work can be modeled by the function $y=-0.045 x+5.7$ where x is the number of years since 1983. Find the zero of the function to the nearest whole number. Explain what the zero means in this situation.

Solution

Substitute __ for y in the model and solve for x.

$$
\begin{array}{rlrl}
y & =-0.045 x+5.7 & & \text { Write the equation. } \\
& =-0.045 x+5.7 & & \text { Substitute __for } y . \\
& & \text { Solve for } x .
\end{array}
$$

The zero of the function is about \qquad . According to the model, there will be no people who use public transit to commute to work \qquad years after \qquad , or in \qquad .

Checkpoint Complete the following exercise.
2. Profit The profit p of a company can be modeled by $p=300-3 t$ where t is the number of years since 2000. Find the zero of the function. Explain what the zero means in this situation.
\qquad

LESSON
 1.8
 Practice

Create a scatter plot of the data.

1.

\boldsymbol{x}	-4	-2	0	2	4
\boldsymbol{y}	2	1	0	-1	-1

2.

\boldsymbol{x}	-3	-2	-1	0	1
\boldsymbol{y}	-8	-5	-2	1	4

Find the equation of the best-fitting line. Approximate the value of \boldsymbol{y} for $\boldsymbol{x}=1$.
3.

4.

5.

6.

7.

8.

\qquad

LESSON 1.8
 Practice
 continued

Determine whether the x-value is a zero of the function.

9. $f(x)=x-5, x=-5$
10. $f(x)=2 x-8, x=4$
11. $f(x)=24-3 x, x=-8$
12. $f(x)=3 x+6, x=-2$
13. $f(x)=7 x-21, x=-3$
14. $f(x)=\frac{1}{2} x-3, x=6$
15. $f(x)=\frac{3}{4} x+8, x=-\frac{32}{3}$
16. $f(x)=6 x-\frac{1}{4}, x=\frac{2}{3}$
17. $f(x)=6-10 x, x=0.6$
18. $f(x)=12 x-9, x=0.8$
19. $f(x)=2 x+15, x=7.5$
20. $f(x)=1.2-3 x, x=0.4$
21. $f(x)=\frac{2}{5} x+2, x=-5$
22. $f(x)=4 x-\frac{5}{4}, x=\frac{5}{16}$
23. $f(x)=1.6+4 x, x=-0.4$

Find the zero of the function.

24. $f(x)=x+10$
25. $f(x)=x-15$
26. $f(x)=8-x$
27. $f(x)=-x-3$
28. $f(x)=3 x+9$
29. $f(x)=20 x-10$
30. $f(x)=8 x-24$
31. $f(x)=-\frac{1}{4} x+8$
32. $f(x)=-7 x-21$
33. $f(x)=12-6 x$
34. $f(x)=\frac{3}{2} x+3$
\qquad

${ }_{1.8}^{1.8}$ Practice ${ }_{\text {corinued }}$

36. Movies The table shows the number of movies for several years watched by a critic.

Year	1995	2000	2003	2004	2005
Number of movies	30	36	37	42	49

a. Make a scatter plot of the data. Let x represent the number of years since 1995 and let y represent the number of movies.
b. Find an equation that models the number of movies as a function of the number of years since 1995 .

37. Dairy The table shows the cost of a dairy product from 2002 to 2006.

Year	2002	2003	2004	2005	2006
Cost (dollars)	3.02	3.30	3.40	3.66	3.84

a. Make a scatter plot of the data. Let x represent the number of years since 2002 and let y represent the cost of the dairy product.
b. Find an equation that models the cost (in dollars) of the dairy product as a function of the number of years since 2002.

c. Approximate the cost of the dairy product in 2007.

1.9
 Graph Absolute Value Functions

Georgia Performance Standard(s)

MM1A1a, MM1A1b, MM1A1c

Your Notes

Goal - Graph absolute value functions.

VOCABULARY

> Absolute value

Absolute value function

GRAPH OF PARENT FUNCTION FOR ABSOLUTE VALUE FUNCTIONS

COMPARING GRAPHS OF ABSOLUTE VALUE FUNCTIONS WITH THE GRAPH OF $f(x)=|x|$

$g(x)=|x-h|$
The graph of g is a \qquad shift of the graph of $f(x)=|x|$. The shift is h units \qquad if $h>0$ and $|h|$ units \qquad if $h<0$. The graph of $\overline{h(x)}=|x+h|$ is a \qquad in the y-axis of the graph of g.
$g(x)=|x|+k$
The graph of g is a \qquad shift of the graph of $f(x)=|x|$. The shift is k units \qquad if $k>0$ and $|k|$ units \qquad if $k<0$.
$g(x)=a|x|$
If $|a|>1$, the graph of g is a vertical \qquad of the graph of $f(x)=|x|$. If $0<|a|<1$, the graph of g is a vertical \qquad of the graph of $f(x)=|x|$. The graph
of $h(x)=-a|x|$ is a \qquad in the x-axis of the graph of g.

Example 1 Graph $g(x)=|x-h|$ and $g(x)=|x|+k$
Graph (a) $g(x)=|x+1|$ and (b) $g(x)=|x|-2$.
Compare the graph with the graph of $f(x)=|x|$.
Make a table of values. Graph the function. Compare the graphs of g and f.
a.

\boldsymbol{x}	-3	-2	-1	0	1
$\boldsymbol{g}(\boldsymbol{x})$					

The graph of $g(x)=|x+1|$ is a \qquad __ of the graph of $\overline{f(x)}=|x|$.

b.

\boldsymbol{x}	-2	-1	0	1	2
$\boldsymbol{g}(\boldsymbol{x})$					

The graph of $g(x)=|x|-2$
is a \qquad

of the graph of $f(x)=|x|$.

Checkpoint Graph the function. Compare the graph with the graph of $f(x)=|x|$.

1. $g(x)=|x-3|$

2. $g(x)=|x|+2$

Graph (a) $g(x)=-2|x|$ and (b) $g(x)=0.6|x|$. Compare the graph with the graph of $f(x)=|x|$.
Make a table of values. Graph the function. Compare the graphs of g and f.
a.

\boldsymbol{x}	-2	-1	0	1	2
$\boldsymbol{g}(\boldsymbol{x})$					

The graph of $g(x)=-2|x|$ opens \qquad and is a of the graph
of $f(x)=|x|$.
b.

x	-2	-1	0	1	2
$g(x)$					

The graph of $g(x)=0.6|x|$ opens \qquad and is a of the graph
of $f(x)=|x|$.

Checkpoint Graph the function. Compare the graph with the graph of $f(x)=|x|$.

3. $g(x)=1.5|x|$

4. $g(x)=-0.4|x|$

\qquad
\qquad

Lesson

Practice

Match the function with its graph.

1. $f(x)=4|x|$
2. $f(x)=\frac{1}{4}|x|$
A.

B.

C.

Match the function with its graph.

4. $f(x)=|x|-1$
5. $f(x)=|x|+1$
6. $f(x)=|x-1|$
A.

B.

C.

\qquad
\qquad

LESSON 1.9
 Practice continued

Graph the function. Compare the graph with the graph of $f(x)=x$.

7. $g(x)=-|x|$

8. $g(x)=|x+2|$

9. $g(x)=|x|+4$

10. $g(x)=|x|-3$

11. $g(x)=\frac{3}{10}|x|$

12. $g(x)=-5|x|$

Words to Review
Give an example of the vocabulary word.

Formula	Function
Domain, Input	Range, Output
Independent variable	Dependent variable
x-intercept	
Slope	

Slope-intercept form	Parallel
Perpendicular	Function notation
Family of functions	Parent linear function
Best-fitting line	
	Zinear interpolation
Linear extrapolation of a function	

