LESSON
 Exercise Set A

Write the polynomial so that the exponents decrease from left to right. Identify the degree and leading coefficient of the polynomial.

1. $4 n^{5}$
2. $4 x-2 x^{2}+3$
3. $6 y^{3}-2 y^{2}+4 y^{4}-5$

Tell whether the expression is a polynomial. If it is a polynomial, find its degree and classify it by the number of its terms. Otherwise, tell why it is not a polynomial.
4. 10^{x}
5. $-6 n^{2}-n^{3}+4$
6. $w^{-3}+5$

Find the sum or difference.

7. $\left(3 z^{2}+z-4\right)+\left(2 z^{2}+2 z-3\right)$
8. $\left(8 c^{2}-4 c+1\right)+\left(-3 c^{2}+c+5\right)$
9. $\left(2 x^{2}+5 x-1\right)+\left(x^{2}-5 x+7\right)$
10. $\left(10 b^{2}-3 b+2\right)-\left(4 b^{2}+5 b+1\right)$
11. $\left(-4 m^{2}+3 m-1\right)-(m+2)$
12. $(3 m+4)-\left(2 m^{2}-6 m+5\right)$

Write a polynomial that represents the perimeter of the figure.

13.

14.

15. Floor Plan The first floor of a home has the floor plan shown. Find the area of the first floor.

16. Profit For 1995 through 2005, the revenue R (in dollars) and the cost C (in dollars) of producing a product can be modeled by

$$
R=\frac{1}{4} t^{2}+\frac{21}{4} t+400 \quad \text { and } \quad C=\frac{1}{12} t^{2}+\frac{13}{4} t+200
$$

where t is the number of years since 1995. Write an equation for the profit earned from 1995 through 2005. (Hint: Profit $=$ Revenue - Cost)

Exercise Set B

Tell whether the expression is a polynomial. If it is a polynomial, find its degree and classify it by the number of its terms. Otherwise, tell why it is not a polynomial.

1. -8
2. $x^{2}-5 x+x^{-1}$
3. $-3 b^{2}-5+\frac{1}{2} b$

Find the sum or difference.

4. $\left(3 m^{3}+2 m+1\right)+\left(4 m^{2}-3 m+1\right)$
5. $\left(-4 y^{2}+y+5\right)+\left(4-3 y-y^{2}\right)$
6. $\left(-4 c+c^{3}+8\right)+\left(c^{2}-5 c-3\right)$
7. $(-3 z+6)-\left(4 z^{2}-7 z-8\right)$
8. $\left(14 x^{4}-3 x^{2}+2\right)-\left(3 x^{3}+4 x^{2}+5\right)$
9. $\left(5-x^{4}-2 x^{3}\right)-\left(-6 x^{2}+5 x+5\right)$
10. Find the $\operatorname{sum} f(x)+g(x)$ and the difference $f(x)-g(x)$ for the functions
$f(x)=-5 x^{2}+2 x-1$ and $g(x)=6 x^{3}+2 x^{2}-5$.

Find the sum or difference.

11. $\left(10 a^{2} b^{2}-7 a^{2} b\right)+\left(-4 a^{3} b^{2}+5 a^{2} b^{2}-3 a^{2} b+5\right)$
12. $\left(6 m^{2} n-5 m n^{2}-8 n+2 m\right)-\left(6 n^{2} m+3 m^{2} n\right)$
13. Mineral Production For 1997 through 2003, the amount P of peat produced (in thousand metric tons) and the amount L of perlite produced (in thousand metric tons) in the United States can be modeled by

$$
\begin{aligned}
& P=3.09 t^{4}-36.74 t^{3}+121.38 t^{2}-77.65 t+663.57 \text { and } \\
& L=1.84 t^{4}-20.04 t^{3}+56.27 t^{2}-48.77 t+703.94
\end{aligned}
$$

where t is the number of years since 1997.
a. Write an equation that gives the total number T of thousand metric tons of peat and perlite produced as a function of the number of years since 1997.
b. Was more peat and perlite produced in 1997 or in 2003? Explain your answer.
14. Home Sales In 1997, the median sale price for a one-family home in the Northeast was about $\$ 187,443$ and the median sale price for a one-family home in the Midwest was about $\$ 151,629$. From 1997 through 2003, the median sale price for a onefamily home in the Northeast increased by about $\$ 13,857$ per year and the median sale price for a one-family home in the Midwest increased by about $\$ 5457$ per year.
a. Write two equations that model the median sale prices of a one-family home in the Northeast and Midwest as functions of the number of years since 1997.
b. How much more did a home in the Northeast cost than a home in the Midwest in 1997 and 2003? What was the change in the sale price of each area from 1997 to 2003 ?

