

Use the quadratic function to complete the table of values.

1.
$$y = 9x^2$$

x	-2	-1	0	1	2
y	?	?	?	?	?

3.
$$y = \frac{5}{2}x^2 + 1$$

5. $y = -4x^2 + 3$

X

V

-2

?

x	-4	-2	0	2	4
y	?	?	?	?	?

2

?

4.
$$y = -\frac{1}{8}x^2 - 2$$

2. $v = -5x^2$

x	-16	-8	0	8	16
y	?	?	?	?	?

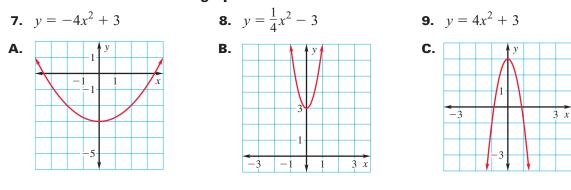
6.
$$y = 6x^2 - 5$$

x	-2	-1	0	1	2
y	?	?	?	?	?

Match the function with its graph.

-1

?


0

?

1 2

?

?

Describe how you can use the graph of $y = x^2$ to graph the given function. 10. $y = x^2 - 8$ 11. $y = -x^2 + 4$ 12. $y = 2x^2 + 3$

10. $y = x^2 - 8$ **13.** $y = -5x^2 + 1$

14.
$$y = \frac{1}{2}x^2 - 2$$

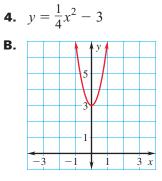
12.
$$y = 2x^2 + 3$$

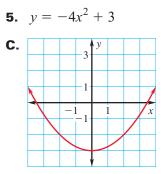
15. $y = -\frac{3}{4}x^2 + 5$

LESSON 2.10	Exercise Set B		MM1A1b	Graph the basic functions $f(x) = x^n$, where $n = 1$ to 3, $f(x) = \sqrt{x}$, $f(x) = x $, and $f(x) = \frac{1}{x}$.
-		لى	MM1A1c	Graph transformations of basic functions including vertical shifts, stretches, and shrinks, as well as reflections across the <i>x</i> - and <i>y</i> -axes.
			MM1A1e	Relate to a given context the characteristics of a function, and use graphs and tables to investigate its behavior.

Use the quadratic function to complete the table of values.

1.
$$y = 10x^2 - 4$$


x	-2	-1	0	1	2
y	?	?	?	?	?


2.	2. $y = -1.5x^2 + 3$									
	x	-2	-1	0	1	2				
	y	?	?	?	?	?				

Match the function with its graph.

3.
$$y = 4x^2 + 3$$

Graph the function and identify its domain and range. *Compare* the graph with the graph of $y = x^2$.

6. $y = \frac{1}{6}x^2 + 2$ 7. $y = -4x^2 - 3$ 8. $y = 9x^2 - \frac{7}{2}$ 9. $y = \frac{3}{5}x^2 + \frac{1}{5}$ 10. $y = -\frac{1}{2}x^2 + 4$ 11. $y = 6x^2 + \frac{3}{4}$ 12. $y = 4x^2 - \frac{2}{3}$ 13. $y = -2x^2 - \frac{1}{2}$ 14. $y = -5x^2 + 15$ 15. $y = 4x^2 - 9$ 16. $y = -\frac{3}{4}x^2 + 7$ 17. $y = 5x^2 + \frac{1}{3}$

Exercise Set B (continued)

Tell how you can obtain the graph of *g* from the graph of *f* by using transformations.

18. $f(x) = x^2 + 6$
 $g(x) = x^2 - 2$ **19.** $f(x) = 2x^2 + 14$
 $g(x) = 2x^2 + 9$ **20.** $f(x) = -\frac{1}{2}x^2 - 3$
 $g(x) = -\frac{1}{2}x^2 - 7$ **21.** $f(x) = 3x^2 - 5$
 $g(x) = 3x^2 + 11$ **22.** $f(x) = 3x^2$
 $g(x) = 9x^2$ **23.** $f(x) = 8x^2$
 $g(x) = 4x^2$

Write a function of the form $y = ax^2 + c$ whose graph passes through the two given points. Then graph the function.

- **24.** (0, 6), (2, 10) **25.** (0, 1), (-1, 0) **26.** (0, -4), (-3, 5)
- **27.** Nylon Rope The breaking weight w (in pounds) of a nylon rope can be modeled by the function $w = 22,210d^2$ where d is the diameter (in inches) of the rope.
 - **a.** Graph the function.
 - **b.** Use the graph to estimate the diameter of a nylon rope that has a breaking weight of 50,000 pounds.
- **28**. **Multiple Representations** Two acorns drop from an oak tree. Acorn A falls 45 feet, while acorn B falls 32 feet.
 - **a.** Writing an Equation For each acorn, write an equation that gives the height *h* (in feet) of the acorn as a function of the time *t* (in seconds) it has fallen.
 - **b.** Making a Table Complete the table for each equation from part (a). Estimate how long it takes each acorn to hit the ground.

Time, t	0	0.4	0.8	1.2	1.4	1.8
Height, <i>h</i>	?	?	?	?	?	?

- **c. Drawing a Graph** Graph each equation from part (a). *Describe* how the graphs of the two equations are related.
- 29. Foam Ball A foam ball is dropped from a deck that is 20 feet above the ground.
 - **a.** The distance y (in feet) that the ball falls is given by the function $y = 16t^2$ where t is the time (in seconds) since the ball was dropped. Graph the function.
 - **b.** The height y (in feet) of the dropped ball is given by the function $y = -16t^2 + 20$ where t is the time (in seconds) since the ball was dropped. Graph the function.
 - **c.** How are the graphs from part (a) and part (b) related? *Explain* how you can use each graph to find the number of seconds after which the ball has dropped 8 feet.