Exercise Set A

MM1A2d Expand binomials using the Binomial Theorem.

- Find the numbers in the eighth row of Pascal's triangle.
- Find the numbers in the ninth row of Pascal's triangle.

Use the Binomial Theorem and Pascal's triangle to write the binomial expansion.

3.
$$(x+1)^2$$

4.
$$(a+3)^3$$

5.
$$(p+5)^4$$

6.
$$(2+v)^4$$

7.
$$(1+b)^6$$

8.
$$(4+q)^3$$

9.
$$(x+4)^2$$

10.
$$(c-2)^4$$

11.
$$(z-1)^5$$

12.
$$(1-g)^3$$

13.
$$(5-r)^4$$

14.
$$(3-b)^6$$

15.
$$(2x+1)^3$$

16.
$$(3x-1)^4$$

17.
$$(2 + 5v)^3$$

18.
$$(2x-3)^4$$

19.
$$(a+4b)^5$$

20.
$$(6x + y)^4$$

- **21.** Find the coefficient of x^2 in the expansion of $(x-7)^4$.
- **22.** Find the coefficient of x^3 in the expansion of $(2x + 5)^5$.
- **23.** Find the coefficient of x^4 in the expansion of $(3x 4)^6$.
- **24.** Error Analysis Describe and correct the error in writing the binomial expansion.

$$(x-4)^3 = x^3 + 12x^2 + 48x + 64$$

- **25.** How many terms are in the expansion of $(x + y)^n$?
- **26.** Use the diagram shown.

1

		1				Row 0
		1	1			Row 1
	1	2	1			Row 2
	1	3	3	1		Row 3
1	4	6	4	1		Row 4
5	10) 1	0	5	1	

- **a.** What is the sum of the numbers in each of rows 0 through 4 of Pascal's triangle?
- **b.** What is the sum in row n?

Exercise Set B

MM1A2d Expand binomials using the Binomial Theorem.

Use the Binomial Theorem and Pascal's triangle to write the binomial expansion.

1.
$$(x+4)^3$$

4.
$$(7 + y)^5$$

7.
$$(x-1)^6$$

10.
$$(m-n)^5$$

13.
$$(4x + 2)^3$$

16.
$$(u-2v)^4$$

19.
$$(x^2 + 2)^4$$

2.
$$(k+8)^4$$

5.
$$(5+b)^6$$

8.
$$(g-6)^4$$

11.
$$(4-3y)^3$$

14.
$$(10x - 1)^4$$

17.
$$(3c+d)^6$$

20.
$$(w^3 - 3)^4$$

3.
$$(w+1)^6$$

6.
$$(1+m)^7$$

9.
$$(4-b)^6$$

12.
$$(2x-1)^5$$

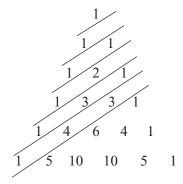
15.
$$(5+3y)^3$$

18.
$$(4p-q)^6$$

21.
$$(2s^4 + 5)^5$$

22. Find the coefficient of x in the expansion of
$$(x + 9)^4$$
.

23. Find the coefficient of
$$x^2$$
 in the expansion of $(3x - 5)^5$.


24. Find the coefficient of
$$x^4$$
 in the expansion of $(5x - 6)^6$.

$$(x+3)^3 = x^3 + 3x^2 + 3x + 27$$

How are the expansions of $(x + y)^n$ and $(x - y)^n$ alike? How do they differ?

Use the diagram shown to describe the pattern formed by the sums of the numbers along the diagonal segments of Pascal's triangle.

