Lesson
 Exercise Set A

MM1A1b Graph the basic functions $f(x)=x^{n}$, where $n=1$ to $3, f(x)=\sqrt{x}, f(x)=|x|$, and $f(x)=\frac{1}{x}$.
MM1A1c Graph transformations of basic functions including vertical shifts, stretches, and shrinks, as well as reflections across the x - and y-axes.

MM1A1d Investigate and explain the characteristics of a function: domain, range, zeros, intercepts, intervals of increase and decrease, maximum and minimum values, and end behavior.
MM1A1h Determine graphically and algebraically whether a function has symmetry and whether it is even, odd, or neither.

Describe the end behavior of the graph of the function.

1. $f(x)=x^{3}$
2. $f(x)=-3 x^{3}$
3. $f(x)=\frac{1}{2} x^{3}-2$

Graph the function. Compare the graph with the graph of $\boldsymbol{y}=\boldsymbol{x}^{\mathbf{3}}$.

4. $y=x^{3}+1$
5. $y=x^{3}-2$
6. $y=4 x^{3}$
7. $y=-2 x^{3}$
8. $y=-x^{3}-1$
9. $y=\frac{1}{3} x^{3}+1$

Tell whether the function is even, odd, or neither.
10. $f(x)=-x^{3}$
11. $f(x)=5 x^{3}$
12. $f(x)=x^{2}+4$
13. $f(x)=x^{3}-x^{2}$
14. $f(x)=-x^{3}+2 x$
15. $f(x)=x^{3}+4 x+1$
16. Error Analysis Describe and correct the student's error in analyzing the function $f(x)=x^{3}+x$.

The function is an odd function because

$$
\begin{aligned}
f(-x) & =(-x)^{3}+(-x) \\
& =-x-x=-f(x) .
\end{aligned}
$$

So the function is symmetric about the y-axis.

17. Multiple Representations The number of fish F in a small pond t years after 2000 can be modeled by the function $F=t^{3}-9 t^{2}+18 t+12$.
a. Making a Table Copy and complete the table.

\boldsymbol{t} (years since 2000)	0	1	2	3	4	5	6	7
\boldsymbol{F} (number of fish)	$?$	$?$	$?$	$?$	$?$	$?$	$?$	$?$

b. Drawing a Graph Use the table to graph the function.
c. Interpreting a Graph Did the number of fish increase or decrease between 2002 and 2004?

MM1A1b Graph the basic functions $f(x)=x^{n}$, where $n=1$ to $3, f(x)=\sqrt{x}, f(x)=|x|$, and $f(x)=\frac{1}{x}$.
MM1A1c Graph transformations of basic functions including vertical shifts, stretches, and shrinks, as well as reflections across the x - and y-axes.

MM1A1d Investigate and explain the characteristics of a function: domain, range, zeros, intercepts, intervals of increase and decrease, maximum and minimum values, and end behavior.
MM1A1h Determine graphically and algebraically whether a function has symmetry and whether it is even, odd, or neither.

Describe the end behavior of the graph of the function.

1. $f(x)=-x^{3}-2 x$
2. $f(x)=-\frac{2}{3} x^{3}+2$
3. $f(x)=0.4 x^{3}-2 x^{2}$
4. Open-Ended Give an example of a transformation or a series of transformations that would change the end behavior of a function.

Graph the function. Compare the graph with the graph of $\boldsymbol{y}=\boldsymbol{x}^{\mathbf{3}}$.

5. $y=3 x^{3}-2$
6. $y=-2 x^{3}+1$
7. $y=-\frac{3}{4} x^{3}$
8. Multiple Choice The graph of which function is a vertical stretch and a reflection in the x-axis of the graph of $y=x^{3}$?
A. $y=-5 x^{3}$
B. $y=-\frac{3}{4} x^{3}$
C. $y=-x^{3}+4$
D. $y=2 x^{3}$

Tell whether the function is even, odd, or neither.

9. $f(x)=\frac{1}{2} x^{3}+9 x$
10. $f(x)=-5 x^{2}-9$
11. $f(x)=x^{3}-x+1$
12. Reasoning Can a cubic function be an even function? Explain your answer algebraically. Also explain your answer using what you know about the end behavior of cubic functions.
13. Stock Market The balance B (in thousands of dollars) in Ed's stock market account between 2000 and 2007 can be modeled by the cubic function graphed at the right, where t is the number of years since 2000 .
a. How much was in Ed's account in 2000?
b. Between what years did his account value decrease?
c. Between what years did his account value increase?

