

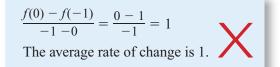
| MM1A1g | Explore rates of change, comparing constant rates<br>of change (i.e., slope) versus variable rates of<br>change. Compare rates of change of linear,<br>quadratic, square root, and other function families.                                             |
|--------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| MM1A1i | Understand that any equation in <i>x</i> can be<br>interpreted as the equation $f(x) = g(x)$ , and<br>interpret the solutions of the equation as the<br><i>x</i> -value(s) of the intersection point(s) of the graphs<br>of $y = f(x)$ and $y = g(x)$ . |

Find the average rate of change of the function from  $x_1$  to  $x_2$ .

**1.** 
$$f(x) = -3x + 15; x_1 = 0, x_2 = 2$$
  
**2.**  $f(x) = 2x + 8; x_1 = -1, x_2 = 4$   
**3.**  $f(x) = -\sqrt{x-2} + 4; x_1 = 2, x_2 = 11$   
**4.**  $f(x) = -\sqrt{x+1} + 2; x_1 = 0, x_2 = 8$ 

### Compare the average rates of change of the functions from $x_1$ to $x_2$ .

- **5.**  $f(x) = x^2 + 12x 3$ ,  $g(x) = 7\sqrt{16x}$ ;  $x_1 = 0$ ,  $x_2 = 4$
- **6.**  $f(x) = x^3 2x^2 x$ , g(x) = 12x + 5;  $x_1 = -1$ ,  $x_2 = 5$
- 7. Error Analysis *Describe* and correct the student's error in finding the average rate of change of  $f(x) = x^3 + 2x^2$  from  $x_1 = -1$  to  $x_2 = 0$ .



# Solve the equation by graphing. If necessary, use a graphing calculator and round your answer to the nearest hundredth.

- 8.  $x^2 + 1 = -x + 3$ 9.  $\frac{1}{3}x^3 + x = -\frac{1}{8}x^2$ 10.  $\sqrt{x 1} = x^3 7$ 11.  $2\sqrt{x} + 1 = \frac{1}{4}(x^2 + x)$ 12.  $x^3 \sqrt{2} = 2x$ 13.  $-\sqrt{x + 10} = x^2 7$
- **14.** Multiple Choice The graphs of f(x) and g(x) intersect at the points (-1, 3) and (4, -2). What are the solutions of the equation f(x) = g(x)?

| Α. | -2 and $-1$ | <b>B.</b> −2 and 3 | <b>C.</b> −1 and 4 | <b>D.</b> -1 and 3 |
|----|-------------|--------------------|--------------------|--------------------|
|----|-------------|--------------------|--------------------|--------------------|

- **15. Multiple Representations** Two objects are thrown upward at the same time. One is thrown from a height of 6 feet with an initial vertical velocity of 64 feet per second. The other is thrown from a height of 20 feet with an initial vertical velocity of 48 feet per second.
  - **a.** Writing Functions Write functions f(t) and g(t) for the height (in feet) t seconds after each was thrown.
  - **b.** Drawing a Graph Graph the functions on the same graph.
  - **c.** Interpreting a Solution Solve f(t) = g(t). Interpret the solution in the context of the problem.

Unit 3





| IM1A1g | Explore rates of change, comparing constant rates<br>of change (i.e., slope) versus variable rates of<br>change. Compare rates of change of linear,<br>quadratic, square root, and other function families.                                             |
|--------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| IM1A1i | Understand that any equation in <i>x</i> can be<br>interpreted as the equation $f(x) = g(x)$ , and<br>interpret the solutions of the equation as the<br><i>x</i> -value(s) of the intersection point(s) of the graphs<br>of $y = f(x)$ and $y = g(x)$ . |

Find the average rate of change of the function from  $x_1$  to  $x_2$ .

**1.** 
$$f(x) = -\frac{2}{3}x + 5; x_1 = -5, x_2 = 3$$
  
**2.**  $f(x) = -x^2 + 8x - 4; x_1 = 0, x_2 = 4$   
**3.**  $f(x) = 1 - \sqrt{x+3}; x_1 = 1, x_2 = 6$   
**4.**  $f(x) = 2 - \sqrt{x+1}; x_1 = 3, x_2 = 7$ 

### *Compare* the average rates of change of the functions from $x_1$ to $x_2$ .

- **5.** f(x) = 5x + 3,  $g(x) = 6\sqrt{9x + 9}$ ;  $x_1 = 0$ ,  $x_2 = 3$ **6.**  $f(x) = x^2 + 8x$ ,  $g(x) = x^3 - x^2 + 4$ ;  $x_1 = -1$ ,  $x_2 = 4$
- 7. **Open-Ended** For the function  $f(x) = -x^3 + 5x^2$ , state values of  $x_1$  and  $x_2$  so that the average rate of change from  $x_1$  to  $x_2$  is (a) positive and (b) negative.

## Solve the equation by graphing. If necessary, use a graphing calculator and round your answer to the nearest hundredth.

**8.** 
$$14 - x^2 = -\sqrt{x}$$
  
**9.**  $-x^3 + x = \frac{3}{2}x^2$   
**10.**  $-\sqrt{x+4} - 2 = x^3$   
**11.**  $\sqrt{x-2} = x^2 + 2$ 

#### In Exercises 12–14, complete the statement.

- **12.** The equation f(x) = g(x) has \_?\_\_\_\_ solution(s) when the graphs of f(x) and g(x) do not intersect.
- **13.** If a cubic equation has a maximum in the second quadrant and a minimum in the fourth quadrant, then the sign of the average rate of change from the maximum to the minimum is \_\_\_\_.
- 14. If the graphs of two equations intersect at (a, b) and (c, d), then the average rates of change for both equations are the same from  $x_1 = \underline{?}$  to  $x_2 = \underline{?}$ .
- **15.** Profit The profit P (in thousands of dollars) of a company from 1997 to 2007 can be approximated by  $P = 0.4t^3 4t^2 + 55.6$  where t represents the year, with t = 0 corresponding to 1997.
  - **a.** Use a graphing calculator to graph the function.
  - **b.** Find the average rate of change of the function from 2004 to 2007. Interpret your answer in the context of the problem.
  - **c.** Find the three-year time periods when the average rate of change was the most positive and the most negative.