MM1A1b Graph the basic functions $f(x)=x^{n}$, where $n=1$ to $3, f(x)=\sqrt{x}, f(x)=|x|$, and $f(x)=\frac{1}{x}$.

MM1A1c Graph transformations of basic functions including vertical shifts, stretches, and shrinks, as well as reflections across the x - and y-axes.
MM1A1d Investigate and explain the characteristics of a function: domain, range, zeros, intercepts, intervals of increase and decrease, maximum and minimum values, and end behavior.

Graph the function and identify its domain and range. Compare the graph

 with the graph of $\boldsymbol{y}=\sqrt{\boldsymbol{x}}$.1. $y=7 \sqrt{x}$
2. $y=\frac{1}{5} \sqrt{x}$
3. $y=-4 \sqrt{x}$

Describe how you would graph the function by using the graph of $\boldsymbol{y}=\sqrt{\boldsymbol{x}}$.
4. $y=\sqrt{x-8}$
5. $y=\sqrt{x}+3$
6. $y=\sqrt{x+7}$
7. $y=\sqrt{x}-5$
8. $y=\sqrt{-x}+3.5$
9. $y=\sqrt{x-\frac{1}{2}}$

Match the function with its graph.

10. $y=\sqrt{x+4}-3$
11. $y=\sqrt{x-3}+4$
12. $y=\sqrt{x-4}+3$
13. $y=\sqrt{x-4}-3$
14. $y=\sqrt{x+3}-4$
15. $y=\sqrt{x+3}+3$
A.

B.

C.

D.

E.

F.

Exercise Set A (continued)

16. Multiple Choice The graph of which function is a horizontal translation of 3 units to the right of the graph of $y=\sqrt{x}$?
A. $y=\sqrt{x}+3$
B. $y=\sqrt{x}-3$
C. $y=\sqrt{x+3}$
D. $y=\sqrt{x-3}$

Graph the function and identify its domain and range. Compare the graph with the graph of $\boldsymbol{y}=\sqrt{\boldsymbol{x}}$.

17. $y=\sqrt{x+4}-4$
18. $y=\sqrt{x+5}+1$
19. $y=\sqrt{x-6}+4$
20. $y=\sqrt{x-5}-7$
21. $y=\sqrt{x-1}+2$
22. $y=\sqrt{x+5}-4$
23. Multiple Representations The time t (in seconds) it takes an object dropped from a height h (in feet) to reach the ground is given by the function $t=\frac{1}{4} \sqrt{h}$.
a. Making a Table Make a table that shows the values of t for $h=0,25,100$, and 225 feet.
b. Graphing an Equation Use the table in part (a) to graph the function. Estimate the height of a building if it takes a stone 4 seconds to reach the sidewalk below when dropped from the top of the building.
c. Checking Reasonableness Is your solution from part (b) reasonable in this situation? Explain.
24. Box Design You are designing a box with a square base that will hold popcorn. The box must be 9 inches tall. The side length y (in inches) of the box is given by the function $y=\frac{1}{3} \sqrt{V}$ where V is the volume (in cubic inches) of the box.
a. Graph the function and identify its domain and range.
b. What is the volume of a box with a side length of 5 inches?
c. What is the volume of a box with a side length of 8 inches?
25. Steel Pipe The inside diameter d of a steel pipe (in inches) and the weight w of water in the pipe (in pounds) are related by the function $d=1.71 \sqrt{w}$.
a. Graph the function and identify its domain and range.
b. What does the water weigh in a pipe with an inside diameter of 17 inches?

Round your answer to the nearest pound.
c. What does the water weigh in a pipe with an inside diameter of 3.5 inches?

Round your answer to the nearest pound.

MM1A1b Graph the basic functions $f(x)=x^{n}$, where $n=1$ to $3, f(x)=\sqrt{x}, f(x)=|x|$, and $f(x)=\frac{1}{x}$.

MM1A1c Graph transformations of basic functions including vertical shifts, stretches, and shrinks, as well as reflections across the x - and y-axes.
MM1A1d Investigate and explain the characteristics of a function: domain, range, zeros, intercepts, intervals of increase and decrease, maximum and minimum values, and end behavior.

Graph the function and identify its domain and range. Compare the graph

 with the graph of $\boldsymbol{y}=\sqrt{\boldsymbol{x}}$.1. $y=2.5 \sqrt{x}$
2. $y=-\frac{3}{5} \sqrt{x}$
3. $y=-0.25 \sqrt{x}$

Describe how you would graph the function by using the graph of $\boldsymbol{y}=\sqrt{\boldsymbol{x}}$.
4. $y=\sqrt{x+2.5}$
5. $y=\sqrt{x}-\frac{3}{2}$
6. $y=\sqrt{-x}+12$
7. $y=\sqrt{x-\frac{1}{4}}$
8. $y=\sqrt{x+5.5}$
9. $y=\sqrt{x}+\frac{3}{4}$

Match the function with its graph.

10. $y=3 \sqrt{x+2}-1$
11. $y=\sqrt{x-3}-2$
A.

12. $y=2 \sqrt{x-1}+3$
13. $y=3 \sqrt{x+1}-2$
B.

E.

14. $y=3 \sqrt{x-1}+2$
15. $y=\sqrt{x+2}+3$
c.

F.

Exercise Set B (continued)

Graph the function and identify its domain and range. Compare the graph with the graph of $\boldsymbol{y}=\sqrt{x}$.

16. $y=\sqrt{x+6}-4$
17. $y=-\sqrt{x-1}+5$
18. $y=\sqrt{x-3}-3$
19. $y=-\sqrt{x+6}+2$
20. $y=\sqrt{x-7}+8$
21. $y=-\sqrt{x-4.5}+2.5$
22. Error Analysis Describe and correct the error in explaining how to graph the function $y=-5 \sqrt{x-8}-12$.

To graph $y=-5 \sqrt{x-8}-12$, sketch the graph of $y=-5 \sqrt{x}$. Then shift the graph 8 units to the left and 12 units down.
23. Multiple Choice How is the graph of $g(x)=4 \sqrt{x}-2$ related to the graph of $h(x)=4 \sqrt{x}+2$?
A. It is a vertical stretch by a factor of 2 of the graph of h.
B. It is a vertical translation of 2 units down of the graph of h.
C. It is a vertical translation of 4 units down of the graph of h.
D. It is a horizontal translation of 4 units to the left of the graph of h.
24. Challenge Write a rule for a radical function that has a domain of all real numbers greater than or equal to -4 and a range of all real numbers less than or equal to 3 .
25. Bridge The time t (in seconds) it takes an object dropped from a height h (in meters) to reach the ground is given by the function $t=\frac{\sqrt{10}}{7} \sqrt{h}$.
a. Graph the function and identify its domain and range.
b. You are on a bridge that passes over a river. It takes about 1.5 seconds for a stone dropped from the bridge to reach the river. About how high is the bridge?
26. Steel Pipe The radius of gyration of a steel pipe is a number that describes a pipe's resistance to buckling. The greater value of r, the more resistance to buckling. The radius of gyration r (in inches) of a steel pipe is given by the function $r=\frac{1}{4} \sqrt{D^{2}+d^{2}}$ where D is the outside diameter of the pipe (in inches) and d is the inside diameter of the pipe (in inches). One standard outside pipe diameter is 4 inches.
a. Write a function for r and d using $D=4$.
b. Graph the function and identify its domain and range.
c. If you want a pipe with a 4 -inch outside diameter and a radius of gyration of 1.3 inches, what must its inside diameter be? Round your answer to the nearest tenth.

