LESSON			MM1A1b	Graph the basic functions $f(x) = x^n$, where $n = 1$ to 3, $f(x) = \sqrt{x}$, $f(x) = x $, and $f(x) = \frac{1}{x}$.
			MM1A1c	Graph transformations of basic functions including vertical shifts, stretches, and shrinks, as well as reflections across the <i>x</i> - and <i>y</i> -axes.
			MM1A1d	Investigate and explain the characteristics of a function: domain, range, zeros, intercepts, intervals of increase and decrease, maximum and minimum values, and end behavior.

Graph the function and identify its domain and range. *Compare* the graph with the graph of $y = \sqrt{x}$.

1.
$$y = 7\sqrt{x}$$
 2. $y = \frac{1}{5}\sqrt{x}$ **3.** $y = -4\sqrt{x}$

Describe how you would graph the function by using the graph of $y = \sqrt{x}$.

4. $y = \sqrt{x-8}$ **5.** $y = \sqrt{x} + 3$ **6.** $y = \sqrt{x+7}$ **7.** $y = \sqrt{x} - 5$ **8.** $y = \sqrt{-x} + 3.5$ **9.** $y = \sqrt{x - \frac{1}{2}}$

Match the function with its graph.

11. $y = \sqrt{x - 3} + 4$ **12.** $y = \sqrt{x-4} + 3$ **10.** $y = \sqrt{x+4} - 3$ **13.** $y = \sqrt{x - 4} - 3$ **14.** $y = \sqrt{x+3} - 4$ **15.** $y = \sqrt{x+3} + 3$ Α. Β. С. y y 5 5 -3-13x3 3 1 -3 1 Ś ż 3 х 5 1 D. Ε. **F**. y 1 -3-1-1 3 3 3 -3-3x-3

Ś

 $5 \tilde{x}$

5

х

Exercise Set A (continued)

16. Multiple Choice The graph of which function is a horizontal translation of 3 units to the right of the graph of $y = \sqrt{x}$?

Α.	$y = \sqrt{x} + 3$	В.	$y = \sqrt{x} - 3$
С.	$y = \sqrt{x+3}$	D.	$y = \sqrt{x - 3}$

Graph the function and identify its domain and range. *Compare* the graph with the graph of $y = \sqrt{x}$.

17. $y = \sqrt{x+4} - 4$	18. $y = \sqrt{x+5} + 1$	19. $y = \sqrt{x-6} + 4$
20. $y = \sqrt{x-5} - 7$	21. $y = \sqrt{x-1} + 2$	22. $y = \sqrt{x+5} - 4$

23. Multiple Representations The time *t* (in seconds) it takes an object dropped from a height *h* (in feet) to reach the ground is given by the function $t = \frac{1}{4}\sqrt{h}$.

a. Making a Table Make a table that shows the values of t for h = 0, 25, 100, and 225 feet.

- **b.** Graphing an Equation Use the table in part (a) to graph the function. Estimate the height of a building if it takes a stone 4 seconds to reach the sidewalk below when dropped from the top of the building.
- **c.** Checking Reasonableness Is your solution from part (b) reasonable in this situation? *Explain*.
- **24.** Box Design You are designing a box with a square base that will hold popcorn. The box must be 9 inches tall. The side length y (in inches) of the box is given by the function $y = \frac{1}{3}\sqrt{V}$ where V is the volume (in cubic inches) of the box.
 - a. Graph the function and identify its domain and range.
 - **b.** What is the volume of a box with a side length of 5 inches?
 - **c.** What is the volume of a box with a side length of 8 inches?
- **25.** Steel Pipe The inside diameter d of a steel pipe (in inches) and the weight w of water in the pipe (in pounds) are related by the function $d = 1.71\sqrt{w}$.
 - **a.** Graph the function and identify its domain and range.
 - **b.** What does the water weigh in a pipe with an inside diameter of 17 inches? Round your answer to the nearest pound.
 - **c.** What does the water weigh in a pipe with an inside diameter of 3.5 inches? Round your answer to the nearest pound.

LESSON	Exercise Set B		MM1A1b	Graph the basic functions $f(x) = x^n$, where $n = 1$ to 3, $f(x) = \sqrt{x}$, $f(x) = x $, and $f(x) = \frac{1}{x}$.
		لي <u>الم</u>	MM1A1c	Graph transformations of basic functions including vertical shifts, stretches, and shrinks, as well as reflections across the <i>x</i> - and <i>y</i> -axes.
			MM1A1d	Investigate and explain the characteristics of a function: domain, range, zeros, intercepts, intervals of increase and decrease, maximum and minimum values, and end behavior.

Graph the function and identify its domain and range. Compare the graph with the graph of $y = \sqrt{x}$.

2. $y = -\frac{3}{5}\sqrt{x}$ **3.** $y = -0.25\sqrt{x}$ **1.** $y = 2.5\sqrt{x}$

Describe how you would graph the function by using the graph of $y = \sqrt{x}$.

4. $y = \sqrt{x + 2.5}$	5. $y = \sqrt{x} - \frac{3}{2}$	6. $y = \sqrt{-x} + 12$
7. $y = \sqrt{x - \frac{1}{4}}$	8. $y = \sqrt{x + 5.5}$	9. $y = \sqrt{x} + \frac{3}{4}$

Match the function with its graph.

10.	$y = 3\sqrt{x+2} - 1$	11.	$y = 2\sqrt{x-1} + 3$	12.	$y = 3\sqrt{x-1} + 2$
13.	$y = \sqrt{x - 3} - 2$	14.	$y = 3\sqrt{x+1} - 2$	15.	$y = \sqrt{x+2} + 3$
Α.	y -1 1 3 7 x	Β.	$\begin{array}{c c} & y \\ & 5 \\ \hline & 3 \\ \hline & 1 \\ \hline & -1 \\ \hline & 1 \\ \hline & 3 \\ \hline & 5 \\ x \end{array}$	C.	y 5 3 -1 -1 1 3 5
D.	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	E.	y 5 3 -1 -1 1 3 5 x	F.	y 3 -1 1 3

5 x

Exercise Set B (continued)

Graph the function and identify its domain and range. *Compare* the graph with the graph of $y = \sqrt{x}$.

16. $y = \sqrt{x+6} - 4$ **17.** $y = -\sqrt{x-1} + 5$ **18.** $y = \sqrt{x-3} - 3$ **19.** $y = -\sqrt{x+6} + 2$ **20.** $y = \sqrt{x-7} + 8$ **21.** $y = -\sqrt{x-4.5} + 2.5$

22. Error Analysis *Describe* and correct the error in explaining how to graph the function $y = -5\sqrt{x-8} - 12$.

To graph $y = -5\sqrt{x-8} - 12$, sketch the graph of $y = -5\sqrt{x}$. Then shift the graph 8 units to the left and 12 units down.

- **23.** Multiple Choice How is the graph of $g(x) = 4\sqrt{x} 2$ related to the graph of $h(x) = 4\sqrt{x} + 2$?
 - **A.** It is a vertical stretch by a factor of 2 of the graph of *h*.
 - **B.** It is a vertical translation of 2 units down of the graph of *h*.
 - **C.** It is a vertical translation of 4 units down of the graph of *h*.
 - **D.** It is a horizontal translation of 4 units to the left of the graph of *h*.
- **24.** Challenge Write a rule for a radical function that has a domain of all real numbers greater than or equal to -4 and a range of all real numbers less than or equal to 3.
- **25.** Bridge The time t (in seconds) it takes an object dropped from a height

h (in meters) to reach the ground is given by the function $t = \frac{\sqrt{10}}{7}\sqrt{h}$.

- **a.** Graph the function and identify its domain and range.
- **b.** You are on a bridge that passes over a river. It takes about 1.5 seconds for a stone dropped from the bridge to reach the river. About how high is the bridge?
- 26. Steel Pipe The radius of gyration of a steel pipe is a number that describes a pipe's resistance to buckling. The greater value of *r*, the more resistance to buckling. The radius of gyration *r* (in inches) of a steel pipe is given by the function r = 1/4√D² + d² where D is the outside diameter of the pipe (in inches) and d is the inside diameter of the pipe (in inches). One standard outside pipe diameter is 4 inches.
 a. Write a function for r and d using D = 4.
 - **b.** Graph the function and identify its domain and range.
 - **c.** If you want a pipe with a 4-inch outside diameter and a radius of gyration of 1.3 inches, what must its inside diameter be? Round your answer to the nearest tenth.