

MM1G3d Understand, use, and prove properties of and relationships among special quadrilaterals: parallelogram, rectangle, rhombus, square, trapezoid, and kite.

For any rhombus *ABCD*, decide whether the statement is *always* or *sometimes* true. Draw a diagram and explain your reasoning.

1. $\angle ABC \cong \angle CDA$ **2.** $\overline{CA} \cong \overline{DB}$

For any rectangle *FGHJ*, decide whether the statement is *always* or *sometimes* true. Draw a diagram and explain your reasoning.

3. $\angle F \cong \angle H$ **4.** $\overline{GH} \cong \overline{HJ}$

Classify the quadrilateral. Explain your reasoning.

Name each quadrilateral—*parallelogram*, *rectangle*, *rhombus*, and *square*—for which the statement is true.

- 7. It is equilateral.
- **9.** It can contain obtuse angles.
- **11.** It is equiangular.
- **13.** The diagonals bisect each other.

- **8.** The diagonals are congruent.
- **10.** It contains no acute angles.
- **12.** The diagonals are perpendicular.
- **14.** It is equiangular and equilateral.

The diagonals of rhombus *PQRS* intersect at *T*. Given that $m \angle RPS = 30^{\circ}$ and RT = 6, find the indicated measure.

- **17.** $m \angle QPR$ **18.** $m \angle QTP$
- **19.** *RP* **20.** *QT*

Exercise Set A (continued)

The diagonals of rectangle *WXYZ* intersect at *P*. Given that $m \angle YXZ = 50^{\circ}$ and XZ = 12, find the indicated measure.

21.	$m \angle WXZ$	22.	$m \angle WPX$
-----	----------------	-----	----------------

23. *PY* **24.** *WX*

The diagonals of square *DEFG* intersect at *H*. Given that EH = 5, find the indicated measure.

25.	$m \angle GHF$	26.	m∠DGH
27.	HF	28.	DE

- **29.** Windows In preparation for a storm, a window is protected by nailing boards along its diagonals. The lengths of the boards are the same. Can you conclude that the window is square? *Explain*.
- **30.** Clothing The side view of a wooden clothes dryer is shown at the right. Measurements shown are in inches.
 - **a.** The uppermost quadrilateral is a square. Classify the quadrilateral below the square. *Explain* your reasoning.
 - **b.** Find the height h of the clothes dryer.

31. Proof The diagonals of rhombus *ABCD* form several triangles. Using a two-column proof, prove that $\triangle BFA \cong \triangle DFC$.

GIVEN: *ABCD* is a rhombus.

PROVE: $\triangle BFA \cong \triangle DFC$

32. Proof Write a two-column proof for one part of Theorem 5.27.

GIVEN: <u>ABCD</u> is a parallelogram. <u>AC</u> bisects $\angle DAB$ and $\angle BCD$. <u>DB</u> bisects $\angle ADC$ and $\angle CBA$.

PROVE: *ABCD* is a rhombus.

Н

D

G

Ε

F

MM1G3d Understand, use, and prove properties of and relationships among special quadrilaterals: parallelogram, rectangle, rhombus, square, trapezoid, and kite.

Decide whether the statement is *true* or *false*. Decide whether the converse is *true* or *false*. If both statements are *true*, write a biconditional statement.

- **1.** If a quadrilateral is a rectangle, then it is a parallelogram.
- 2. If a quadrilateral is a parallelogram, then it is a rhombus.
- **3.** If a quadrilateral is a square, then it is a rhombus.
- **4.** If a quadrilateral is a rectangle, then it is a rhombus.
- **5.** If a rhombus is a square, then it is a rectangle.

In the diagram shown, *BDEG* is a rectangle and *ABCD* is a rhombus. Find the measure of the indicated angle.

6.	$\angle GDB$	7.	$\angle ABC$
8.	$\angle DAB$	9.	$\angle BCG$
10.	$\angle GCE$	11.	$\angle DEG$
12.	$\angle AHB$	13.	$\angle DGB$

Find the length or angle measure.

14.	WXYZ is a square.
	WX = 1 - 10x
	YZ = 14 + 3x
	$XY = _?$

15. WXYZ is a rhombus. $m \angle X = 24(10 - x)^{\circ}$ $m \angle Z = 6(x + 15)^{\circ}$ $m \angle Y = \underline{?}$

16. *WXYZ* is a rectangle. Perimeter of $\triangle XYZ = 24$ XZ = 13 - xXY + YZ = 5x - 1 $WY = \underline{?}$

Classify the special quadrilateral. *Explain* your reasoning. Then find the values of *x* and *y*.

Exercise Set B (continued)

The diagonals of rectangle *WXYZ* intersect at *O*. Given that $W = M \times XYW = 56^{\circ}$ and WY = 33, find the indicated measure.

- **23.** $m \angle XWO$ **24.** $m \angle ZOY$
- **25.** *XO* **26.** *WZ*

27. Copy and complete the proof.

GIVEN: *WHAT* is a parallelogram. *DART* is a rhombus.

PROVE: *WHAT* is a rectangle.

Statements	Reasons
1. <i>WHAT</i> is a \square .	1?
2. $\overline{WD} \cong \overline{DA}$	2. <u>?</u>
3?	3. Diagonals of □ bisect each other.
4	4. Given
5. $\overline{DT} \cong \overline{DA}$	5. <u>?</u>
6. $\overline{WD} \cong \overline{HD} \cong \overline{DA} \cong \overline{DT}$	6. <u>?</u>
7?	7. Segment Addition Postulate
8	8. Substitution
9. <i>WHAT</i> is a rectangle.	9. _ ?

28. Proof Write a two-column or paragraph proof.

GIVEN: $\triangle GEC \cong \triangle GHX$ *GEBH* is a parallelogram.

PROVE: *GEBH* is a rhombus.

29. Proof Write a coordinate proof of the following statement, which is part of Theorem 5.28.

If a quadrilateral is a rectangle, then its diagonals are congruent.