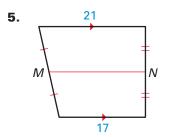
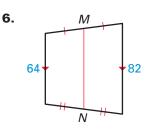
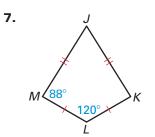
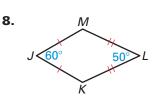

Points *A*, *B*, *C*, and *D* are the vertices of a quadrilateral. Determine whether *ABCD* is a trapezoid.

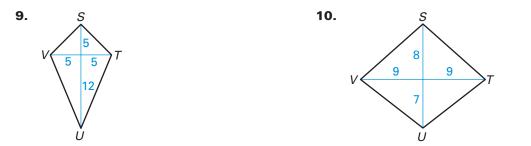
1. A(-2, 3), B(3, 3), C(-1, -2), D(2, -2)


2.
$$A(-3, 2), B(3, 0), C(4, 3), D(-2, 5)$$

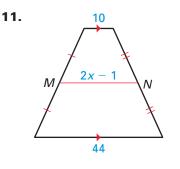


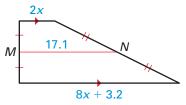


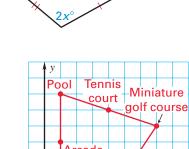

Find the length of the midsegment of the trapezoid.



JKLM is a kite. Find $m \angle K$.




Use Theorem 5.33 and the Pythagorean Theorem to find the side lengths of the kite. Write the lengths in simplest radical form.


Exercise Set A (continued)

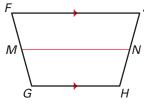
Find the value of x.

- **15. Maps** Use the map shown at the right. The lines represent a sidewalk connecting the locations on the map.
 - **a.** Is the sidewalk in the shape of a kite? *Explain.*
 - **b.** A sidewalk is built that connects the arcade, tennis court, miniature golf course, and restaurant. What is the shape of the sidewalk?

М

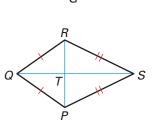
32

4x

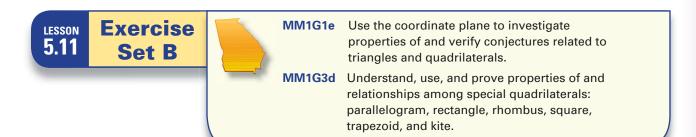

12.

14.

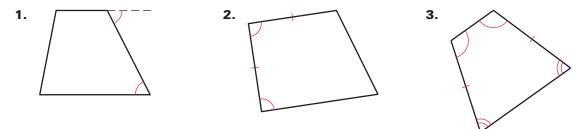
43



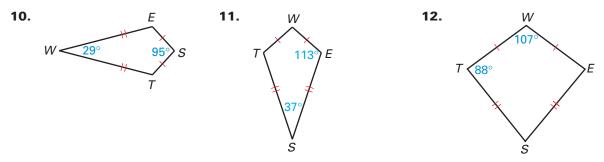
- **c.** What is the length of the midsegment of the sidewalk in part (b)?
- **16.** Kite You cut out a piece of fabric in the shape of a kite so that the congruent angles of the kite are 100°. Of the remaining two angles, one is 4 times larger than the other. What is the measure of the largest angle in the kite?
- **17. Proof** \overline{MN} is the midsegment of isosceles trapezoid *FGHJ*. Write a paragraph proof to show that *FMNJ* is an isosceles trapezoid.

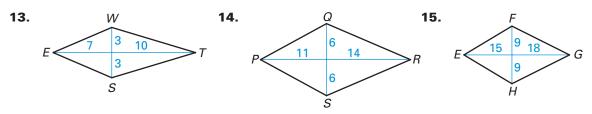


18. Proof Prove Theorem 5.33.


GIVEN: \underline{PQRS} is a kite. $\overline{PQ} \cong \overline{RQ}, \ \overline{PS} \cong \overline{RS}$ **PROVE:** $\overline{PR} \perp \overline{QS}$

13.


Determine whether the quadrilateral is a trapezoid. If it is, is it an isosceles trapezoid?


Quadrilateral *ABCD* is a trapezoid with midsegment \overline{EF} . Use the given information to answer the following.

- **4.** If $m \angle B = 73^\circ$, then $m \angle C = \underline{?}$.
- **5.** If $m \angle A = 51^{\circ}$ and $m \angle C = 105^{\circ}$, then $m \angle D = \underline{?}$.
- 6. If $m \angle A = 48^{\circ}$ and $m \angle C = 112^{\circ}$, then $m \angle CFE = _?$.
- **7.** If AB = 28 and DC = 13, then $EF = _?_.$
- **8.** If EF = 13 and DC = 6, then $AB = _?_.$
- **9.** If EF = x + 5 and DC + AB = 4x + 6, then $EF = _?$.

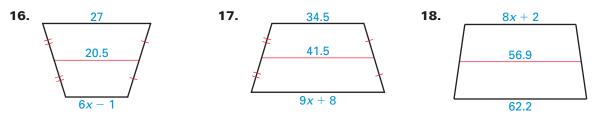
WEST is a kite. Find the measures of the missing angles.

Use Theorem 5.33 and the Pythagorean Theorem to find the side lengths of the kite. Write the lengths in simplest radical form.

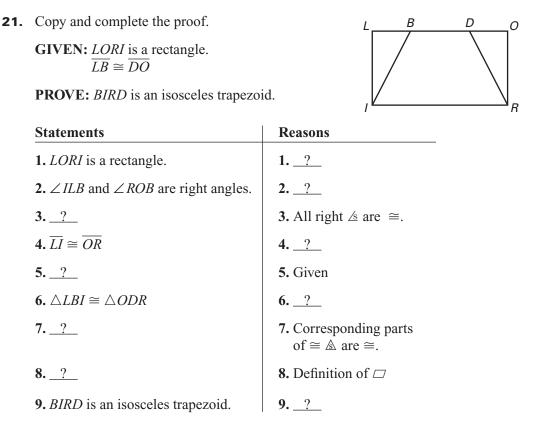
Unit 5 Geometry: Relationships in Triangles and Quadrilaterals **327**

Α

F

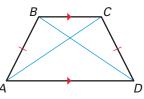

Г

В


F

Exercise Set B (continued)

Find the value of *x*.


- **19.** In an isosceles trapezoid, if one pair of base angles is twice the measure of the second pair of base angles, what are the measures of the angles?
- **20.** If the midsegment of a trapezoid measures 6 units long, what is true about the lengths of the bases of the trapezoid?

22. Proof Write a two-column proof of part of Theorem 5.31.

GIVEN: ABCD is an isosceles trapezoid.

$$\overline{BC} \parallel \overline{AD}, \overline{AB} \cong \overline{CD}$$
PROVE: $\overline{AC} \cong \overline{BD}$

