LESSON
 5.2
 Exercise Set A

Find and use points of concurrency in triangles: incenter, orthocenter, circumcenter, and centroid.

Find the length of $\overline{\mathbf{A B}}$.
1.

2.

3.

Tell whether the information in the diagram allows you to conclude that \boldsymbol{C} is on the perpendicular bisector of $\overline{\mathbf{A B}}$.
5.

6.

Use the diagram. $\overline{E H}$ is the perpendicular bisector of $\overline{D F}$. Find the indicated measure.
7. Find $E F$.
8. Find $D E$.
9. Find $F G$.
10. Find $D G$.
11. Find $F H$.
12. Find $D F$.

In the diagram, the perpendicular bisectors of $\triangle A B C$ meet at point G and are shown dashed. Find the indicated measure.
13. Find $A G$.
14. Find $B D$.
15. Find $C F$.
16. Find $B G$.
17. Find $C E$.
18. Find $A C$.

Exercise Set A (continued)

19. Error Analysis Explain why the conclusion is not correct given the information in the diagram.

$\overleftrightarrow{J K}$ will pass through L.

Draw $\overline{A B}$ with the given length. Construct the perpendicular bisector and choose point C on the perpendicular bisector so that the distance between C and $\overline{A B}$ is 1 inch. Measure $\overline{A C}$ and $\overline{B C}$.
20. $A B=0.5$ inch
21. $A B=1$ inch
22. $A B=2$ inches

Write a two-column or a paragraph proof.

23. GIVEN: C is on the perpendicular bisector of $\overline{A B}$.

PROVE: $\triangle A C D \cong \triangle B C D$

25. Early Aircraft Set On many of the earliest airplanes, wires connected vertical posts to the edges of the wings, which were wooden frames covered with cloth. The lengths of the wires from the top of a post to the edges of the frame are the same and distances from the bottom of the post to the ends of the two wires are the same. What does that tell you about the post and the section of frame between the ends of the wires?

LESSON 5.2
 Exercise Set B

MM1G3e Find and use points of concurrency in triangles: incenter, orthocenter, circumcenter, and centroid.

Find the length of $\overline{\operatorname{RS}}$.

1.

2.

3.

Use the diagram. $\overline{D E}$ is the perpendicular bisector of $\overline{A C}$. Find the indicated measure.
4. Find $A B$.
5. Find $A E$.
6. Find $A D$.

Draw $\overline{\boldsymbol{A B}}$ with the given length. Construct the perpendicular bisector and choose point D on the perpendicular bisector so that the distance between D and $\overline{A B}$ is $\mathbf{2}$ inches. Measure $\overline{A D}$ and $\overline{B D}$.
10. $A B=2$ inches
11. $A B=1.5$ inches
12. $A B=1$ inch
13. The perpendicular bisectors of $\triangle A B C$ meet at point G and are shown as dashed lines. Find $B G$.
14. Exercising You and two friends plan to exercise together. You want your meeting place to be the same distance from each person's house. Explain how you can use the diagram to locate the meeting place.
 your house

Stan's house

[^0]
Exercise Set B (continued)

In Exercises 15 and 16, copy and complete the statement using always, sometimes, or never.

15. A perpendicular bisector of a triangle \qquad ? passes through the midpoint of a side of the triangle.
16. Angle bisectors of a triangle \qquad ? intersect at a single point.

In Exercises 17 and 18, write a two-column or a paragraph proof.

17. GIVEN: $\overline{N P}$ is a perpendicular bisector of $\overline{M O}$.

PROVE: $\triangle N M R \cong \triangle N O R$

18. GIVEN: $\triangle F J G \cong \triangle F J I$

PROVE: $\overline{H I} \cong \overline{H G}$

19. Bridge In the diagram, the road is perpendicular to the support beam and $\overline{A B} \cong \overline{C B}$. What theorem allows you to conclude that $\overline{A D} \cong \overline{C D}$? Explain.

[^0]: Maria's house

