LESSON
 5.6
 Exercise Set A

Use conjecture, inductive reasoning, deductive reasoning, counterexamples, and indirect proof as appropriate.

Copy and complete the statement with <, >, or =. Explain.

1. $S T$? $V W$

2. $J K$? $L M$

3. $D E \xrightarrow[?]{ } E F$

4. $m \angle 1$? $m \angle 2$

5. $m \angle 1$? $m \angle 2$

6. $m \angle 1$? $m \angle 2$

7. $A B$? $C D$

Use the Hinge Theorem or its converse and properties of triangles to write and solve an inequality to describe a restriction on the value of \boldsymbol{x}.
9.

10.

Exercise Set A (continued)

Write a temporary assumption you could make to prove the conclusion indirectly.

11. If two lines in a plane are parallel, then the two lines do not contain two sides of a triangle.
12. In $\triangle A B C$, if $m \angle A>90^{\circ}$, then $m \angle B<90^{\circ}$.
13. If x and y are even integers, then $x y$ is even.
14. Multiple Representations All four legs of the table shown have identical measurements, but they are attached to the table top so that $\angle 3$ is smaller than $\angle 1$.
a. Using a Theorem Use the Hinge Theorem to explain why the table top is not level.

b. Using the Converse of a Theorem Use the Converse of the Hinge Theorem to explain how to use a length measure to determine when $\angle 4 \cong \angle 2$ in reattaching the rear pair of legs to make the table level.
15. Fishing Contest One contestant in a catch-and-release fishing contest spends the morning at a location 1.8 miles due north of the starting point, then goes 1.2 miles due east for the rest of the day. A second contestant starts out 1.2 miles due east of the starting point, then goes another 1.8 miles in a direction 84° south of due east to spend the rest of the day. Which angler is farther from the starting point at the end of the day? Explain how you know.
16. Indirect Proof Arrange statements $\mathrm{A}-\mathrm{F}$ in order to write an indirect proof of Case 1.

GIVEN: $\overline{A D}$ is a median of $\triangle A B C$.

$$
\angle A D B \cong \angle A D C
$$

PROVE: $A B=A C$

Case 1:

A. Then $m \angle A D B<m \angle A D C$ by the converse of the Hinge Theorem.
B. Then $\overline{B D} \cong \overline{C D}$ by the definition of midpoint. Also, $\overline{A D} \cong \overline{A D}$ by the reflexive property.
C. This contradiction shows that the temporary assumption that $A B<A C$ is false.
D. But this contradicts the given statement that $\angle A D B \cong \angle A D C$.
E. Because $\overline{A D}$ is a median of $\triangle A B C, D$ is the midpoint of $\overline{B C}$.
F. Temporarily assume that $A B<A C$.
17. Indirect Proof There are two cases to consider for the proof in Exercise 16.

Write an indirect proof for Case 2, temporarily assuming $A B>A C$.

Lesson
 Exercise Set B

MM1G2a Use conjecture, inductive reasoning, deductive reasoning, counterexamples, and indirect proof as appropriate.

Copy and complete the statement with <, >, or =. Explain.

1. $T P$? $A G$
2. $K D$ \qquad CP

3. $m \angle 1$? $m \angle 2$
4. $m \angle 1$? $m \angle 2$

5. $A T$? $B T$

In $\triangle D E F, \overline{D M}$ is a median. Determine if each statement is always, sometimes, or never true.
7. If $m \angle 2>m \angle 1$, then $E D>F D$.
8. If $m \angle E>m \angle F$, then $\angle 1$ is obtuse.
9. If $\angle 2$ is acute, then $m \angle F>m \angle E$.
10. If $m \angle E<m \angle F$, then $m \angle 1<m \angle 2$.
11. If $m \angle 2>m \angle 1$, then $E D>F D$.

12. If $m \angle D=90^{\circ}$, then $F D>E D$.

Exercise Set B (continued)

13. Error Analysis Explain why the student's reasoning is incorrect.

By the Hinge Theorem, $J K<M L$.

Use the Hinge Theorem or its converse and properties of triangles to write and solve an inequality to describe a restriction on the value of \boldsymbol{x}.

14.

15.

16. Sailing Two families are going sailing. Family A leaves the marina and sails
2.3 miles due north, then sails 3 miles due west. Family B leaves the marina and sails 2.3 miles due south, then sails 3 miles in a direction 1° north of due east. Which family is farther from the marina? Explain your reasoning.

In Exercises 17-19, write an indirect proof.

17. Prove Theorem 5.11, which is given on page 284.

GIVEN: $m \angle A>m \angle B$
PROVE: $B C>A C$

18. GIVEN: $\angle A B C \cong \angle D B C$

PROVE: $\overline{B C} \perp \overline{A D}$

19. GIVEN: $\overline{R U}$ is an altitude, $\overrightarrow{R U}$ bisects $\angle S R T$.

PROVE: $\triangle R S T$ is isosceles.

