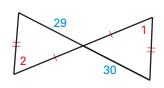
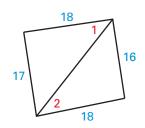
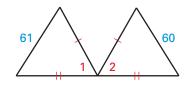

a Use conjecture, inductive reasoning, deductive reasoning, counterexamples, and indirect proof as appropriate.

Copy and complete the statement with <, >, or =. Explain.

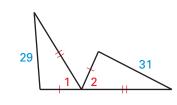



3. *JK* <u>?</u> *LM*

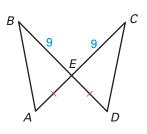
5. $m \angle 1 _ ? _ m \angle 2$



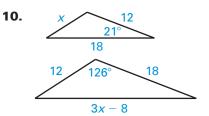
7. *m*∠1 _? *m*∠2



2. $DE \underline{?} EF$


4. *m*∠1 _? *m*∠2

6. *m*∠1 <u>?</u> *m*∠2



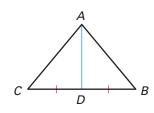
8. *AB* <u>?</u> *CD*

Use the Hinge Theorem or its converse and properties of triangles to write and solve an inequality to describe a restriction on the value of *x*.

9. 39 45 36 $(x + 18)^{\circ}$ 45

Exercise Set A (continued)

Write a temporary assumption you could make to prove the conclusion indirectly.

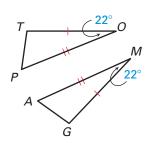

- **11.** If two lines in a plane are parallel, then the two lines do not contain two sides of a triangle.
- **12.** In $\triangle ABC$, if $m \angle A > 90^\circ$, then $m \angle B < 90^\circ$.
- **13.** If x and y are even integers, then xy is even.
- **14.** Multiple Representations All four legs of the table shown have identical measurements, but they are attached to the table top so that $\angle 3$ is smaller than $\angle 1$.
 - **a.** Using a Theorem Use the Hinge Theorem to explain why the table top is not level.
 - **b.** Using the Converse of a Theorem Use the Converse of the Hinge Theorem to explain how to use a length measure to determine when $\angle 4 \cong \angle 2$ in reattaching the rear pair of legs to make the table level.
- **15.** Fishing Contest One contestant in a catch-and-release fishing contest spends the morning at a location 1.8 miles due north of the starting point, then goes 1.2 miles due east for the rest of the day. A second contestant starts out 1.2 miles due east of the starting point, then goes another 1.8 miles in a direction 84° south of due east to spend the rest of the day. Which angler is farther from the starting point at the end of the day? *Explain* how you know.
- **16.** Indirect Proof Arrange statements A–F in order to write an indirect proof of Case 1.

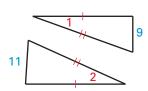
GIVEN: \overline{AD} is a median of $\triangle ABC$. $\angle ADB \cong \angle ADC$

PROVE: AB = AC

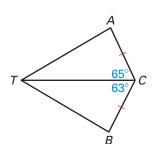
Case 1:

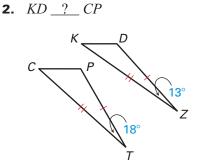
- **A.** Then $m \angle ADB < m \angle ADC$ by the converse of the Hinge Theorem.
- **B.** Then $\overline{BD} \cong \overline{CD}$ by the definition of midpoint. Also, $\overline{AD} \cong \overline{AD}$ by the reflexive property.
- **C.** This contradiction shows that the temporary assumption that AB < AC is false.
- **D.** But this contradicts the given statement that $\angle ADB \cong \angle ADC$.
- **E.** Because \overline{AD} is a median of $\triangle ABC$, *D* is the midpoint of *BC*.
- **F.** Temporarily assume that AB < AC.
- **17. Indirect Proof** There are two cases to consider for the proof in Exercise 16. Write an indirect proof for Case 2, temporarily assuming AB > AC.



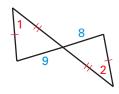

 Use conjecture, inductive reasoning, deductive reasoning, counterexamples, and indirect proof as appropriate.

Copy and complete the statement with <, >, or =. Explain.

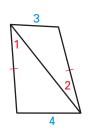

1. *TP* <u>?</u> *AG*



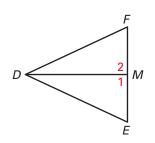
3. *m*∠1 _? *m*∠2



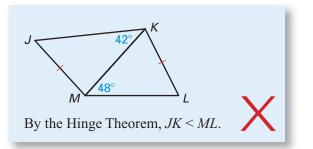
5. *AT* <u>?</u> *BT*



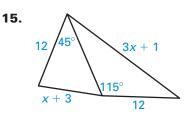
4. *m*∠1 _? *m*∠2



6. $m \angle 1 _ ? _ m \angle 2$


In \triangle DEF, \overline{DM} is a median. Determine if each statement is *always*, *sometimes*, or *never* true.

- 7. If $m \angle 2 > m \angle 1$, then ED > FD.
- **8.** If $m \angle E > m \angle F$, then $\angle 1$ is obtuse.
- **9.** If $\angle 2$ is acute, then $m \angle F > m \angle E$.
- **10.** If $m \angle E < m \angle F$, then $m \angle 1 < m \angle 2$.
- **11.** If $m \angle 2 > m \angle 1$, then ED > FD.
- **12.** If $m \angle D = 90^\circ$, then FD > ED.


Exercise Set B (continued)

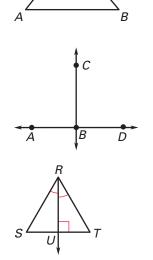
13. Error Analysis *Explain* why the student's reasoning is incorrect.

Use the Hinge Theorem or its converse and properties of triangles to write and solve an inequality to describe a restriction on the value of *x*.

16. Sailing Two families are going sailing. Family A leaves the marina and sails 2.3 miles due north, then sails 3 miles due west. Family B leaves the marina and sails 2.3 miles due south, then sails 3 miles in a direction 1° north of due east. Which family is farther from the marina? *Explain* your reasoning.

In Exercises 17–19, write an indirect proof.

19. GIVEN: \overline{RU} is an altitude, \overline{RU} bisects $\angle SRT$.


PROVE: $\triangle RST$ is isosceles.

17. Prove Theorem 5.11, which is given on page 284.

GIVEN: $m \angle A > m \angle B$

PROVE: BC > AC

18. GIVEN: $\angle ABC \cong \angle DBC$ PROVE: $\overline{BC} \perp \overline{AD}$

Unit 5 Geometry: Relationships in Triangles and Quadrilaterals 297