

Find the sum of the measures of the interior angles of the indicated convex polygon.

1. Hexagon	2. Dodecagon	3. 11-gon
4. 15-gon	5. 20-gon	6. 40-gon

The sum of the measures of the interior angles of a convex polygon is given. Classify the polygon by the number of sides.

7.	180°	8.	540°	9.	900°
10.	1800°	11.	2520°	12.	3960°
13.	5040°	14.	5940°	15.	8640°

Find the value of x.

- **22.** Error Analysis A student claims that the sum of the measures of the exterior angles of a pentagon is greater than the sum of the measures of the exterior angles of a quadrilateral. The student justifies this claim by saying that a pentagon has one more side than a quadrilateral. *Describe* and correct the student's error.
- **23.** What is the measure of each exterior angle of a regular nonagon?
- **24.** The measures of the exterior angles of a convex quadrilateral are 90° , $10x^{\circ}$, $5x^{\circ}$, and 45° . What is the measure of the largest exterior angle?

Exercise Set A (continued)

25. The measures of the interior angles of a convex octagon are $45x^\circ$, $40x^\circ$, 155° , 120° , 155° , $38x^\circ$, 158° , and $41x^\circ$. What is the measure of the smallest interior angle?

Find the measures of an interior angle and an exterior angle of the indicated polygon.

- **26.** Regular triangle**27.** Regular octagon**28.** Regular 16-gon
- **29.** Regular 45-gon
 30. Regular 60-gon
 31. Regular 100-gon

In Exercises 32–35, find the value of *n* for each regular *n*-gon described.

- **32.** Each interior angle of the regular *n*-gon has a measure of 140° .
- **33.** Each interior angle of the regular *n*-gon has a measure of 175.2° .
- **33.** Each exterior angle of the regular *n*-gon has a measure of 45° .
- **35.** Each exterior angle of the regular *n*-gon has a measure of 3° .
- **36.** Storage Shed The side view of a storage shed is shown below. Find the value of *x*. Then determine the measure of each angle.

37. Tents The front view of a camping tent is shown below. Find the value of *x*. Then determine the measure of each angle.

38. Proof Because all the interior angle measures of a regular *n*-gon are equal, you can find the measure of each individual interior angle. The measure of each interior angle of a regular *n*-gon is $\frac{(n-2) \cdot 180}{n}$. Write a paragraph proof to prove this statement.

Find the sum of the measures of the interior angles of the indicated convex polygon.

1. 21-gon **2.** 35-gon **3.** 50-gon

The sum of the measures of the interior angles of a convex polygon is given. Classify the polygon by the number of sides.

- **4.** 1440°
 5. 3060°
 6. 3780°

 7. 6480°
 8. 8100°
 9. 8820°
- Find the value of x.

- **16.** What is the measure of each interior angle of a regular nonagon?
- **17.** The measures of the exterior angles of a convex hexagon are 45° , 60° , x° , $3x^{\circ}$, $7x^{\circ}$, and 90°. What is the measure of the largest exterior angle?
- **18.** The measures of the interior angles of a convex decagon are 150° , 145° , 130° , $34x^{\circ}$, $35x^{\circ}$, 135° , 160° , 120° , $30x^{\circ}$, and $21x^{\circ}$. What is the measure of the smallest interior angle?

Find the measures of an interior angle and an exterior angle of the indicated regular polygon.

19.	Regular heptagon	20.	Regular dodecagon	21.	Regular 17-gon
22.	Regular 50-gon	23.	Regular 70-gon	24.	Regular 125-gon

Exercise Set B (continued)

In Exercises 25–28, find the value of *n* for each regular *n*-gon described.

- **25.** Each interior angle of the regular *n*-gon has a measure of 165° .
- **26.** Each interior angle of the regular *n*-gon has a measure of 177.6° .
- **27.** Each exterior angle of the regular *n*-gon has a measure of 5° .
- **28.** Each exterior angle of the regular *n*-gon has a measure of 12° .

Determine if it is possible for a regular polygon to have an interior angle with the given angle measure. *Explain* your reasoning.

33. Light Fixture The side view of a light fixture is shown below. Find the value of *x*. Then determine the measure of each angle.

- **35. Multiple Representations** The formula for the measure of each interior angle in a regular polygon can be written in function notation.
 - **a.** Writing a Function Write a function h(n), where *n* is the number of sides in a regular polygon and h(n) is the measure of any interior angle in the regular polygon.
 - **b.** Using a Function Use the function from part (a) to find h(10). Then use the function to find *n* if $h(n) = 156^{\circ}$.
 - **c.** Graphing a Function Graph the function from part (a) for n = 3, 4, 5, 6, 7, 8, and 9. Based on your graph, describe what happens to the value of h(n) as *n* increases. *Explain* your reasoning.
- **36. Proof** Write a paragraph proof to prove the following statement:

If the measure of each interior angle of a regular *n*-gon is x° , then $n = \frac{360}{180 - x}$.