

2.

What theorem can you use to show that the quadrilateral is a parallelogram?

For what value of x is the quadrilateral a parallelogram?

Exercise Set A (continued)

The vertices of quadrilateral ABCD are given. Draw ABCD in a coordinate plane and show that it is a parallelogram.

13. A(-2, -3), B(0, 5), C(6, 5), D(4, -3)**14.** A(-3, -4), B(-1, 2), C(7, 0), D(5, -6)

Describe how to prove that ABCD is a parallelogram.

- **17.** Three vertices of $\Box ABCD$ are A(-1, 4), B(4, 4), and C(11, -3). Find the coordinates of point D.
- **18.** History The diagram shows a battering ram which was used in ancient times to break through walls. A log is suspended on ropes of equal length (*GF* and \overline{HJ}). The log swings, causing quadrilateral FGHJ to shift. In the diagram, $\overline{GH} \cong \overline{FJ}$ and \overline{GH} is parallel to the ground. Identify FGHJ. Explain.

19. Multiple Representations Use the diagram of PQRS with the auxiliary line segment drawn. Copy and complete the flow proof of Theorem 5.24. Then write it as a two-column proof.

GIVEN: $\overline{OR} \parallel \overline{PS}, \overline{OR} \cong \overline{PS}$

PROVE: *PQRS* is a parallelogram.

PROVE: *ABCD* is a parallelogram.

LESSON	Exercise	MM1G1e Use the coo properties o	Determine the distance between two points.	
5.9	Set B		MM1G1e	Use the coordinate plane to investigate properties of and verify conjectures related to triangles and quadrilaterals.
			MM1G3d	Understand, use, and prove properties of and relationships among special quadrilaterals: parallelogram, rectangle, rhombus, square, trapezoid, and kite.

For what value of x is the quadrilateral a parallelogram?

Decide whether you are given enough information to determine that the quadrilateral is a parallelogram.

- **7.** Opposite sides are parallel.
- **9.** Two pairs of consecutive sides are congruent.
- **11.** Diagonals are congruent.
- **13.** All four sides are congruent.

- **8.** Opposite sides are congruent.
- **10.** Two pairs of consecutive angles are congruent.
- **12.** Diagonals bisect each other.
- **14.** Consecutive angles are supplementary.

Prove that the points represent the vertices of a parallelogram. Use the method indicated.

15. A(-4, 7), B(3, 0), C(2, -5), D(-5, 2); Both pairs of opposite sides are parallel.

16. A(-2, 8), B(2, 7), C(5, 1), D(1, 2); Both pairs of opposite sides are congruent.

Find all the possible coordinates for the fourth vertex of a parallelogram with the given vertices. Then draw the parallelogram on a graph.

17. (4, -1), (-4, 1), (0, 8)**18.** (3, -4), (-2, -1), (1, 2)

Exercise Set B (continued)

19. Error Analysis A student claims that because two pairs of sides are congruent, quadrilateral *JKLM* shown at the right is a parallelogram. *Describe* the student's error.

 \cap

20. Copy and complete the proof.

GIVEN: Regular hexagon *JKLMNO*

PROVE: *OKLN* is a parallelogram.

Statements	Reasons	
1	1. Given	
2. $\overline{JO} \cong \overline{MM}$ $\overline{JK} \cong \overline{ML}$ $\angle J \cong \angle M$	2?	
3?	3. SAS Congruence Postulate	
4. $\overline{OK} \cong \overline{NL}$	4 ? _	
5	5. Definition of regular polygon	
6. <i>OKLN</i> is a □.	6. _ ?	

21. Proof Write a two-column proof.

GIVEN: VWKJ and SJRU are parallelograms.

PROVE: $\angle W \cong \angle U$

Κ

M

1

GIVEN: *ABCD* is a \square . *E* is the midpoint of \overline{AD} . *F* is the midpoint of \overline{BC} .

